org.apache.spark.sql.execution.SparkOptimizer.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.execution
import org.apache.spark.sql.ExperimentalMethods
import org.apache.spark.sql.catalyst.catalog.SessionCatalog
import org.apache.spark.sql.catalyst.optimizer._
import org.apache.spark.sql.catalyst.plans.logical.LogicalPlan
import org.apache.spark.sql.catalyst.rules.Rule
import org.apache.spark.sql.connector.catalog.CatalogManager
import org.apache.spark.sql.execution.datasources.{PruneFileSourcePartitions, SchemaPruning, V1Writes}
import org.apache.spark.sql.execution.datasources.v2.{GroupBasedRowLevelOperationScanPlanning, OptimizeMetadataOnlyDeleteFromTable, V2ScanPartitioningAndOrdering, V2ScanRelationPushDown, V2Writes}
import org.apache.spark.sql.execution.dynamicpruning.{CleanupDynamicPruningFilters, PartitionPruning, RowLevelOperationRuntimeGroupFiltering}
import org.apache.spark.sql.execution.python.{ExtractGroupingPythonUDFFromAggregate, ExtractPythonUDFFromAggregate, ExtractPythonUDFs, ExtractPythonUDTFs}
class SparkOptimizer(
catalogManager: CatalogManager,
catalog: SessionCatalog,
experimentalMethods: ExperimentalMethods)
extends Optimizer(catalogManager) {
override def earlyScanPushDownRules: Seq[Rule[LogicalPlan]] =
// TODO: move SchemaPruning into catalyst
Seq(SchemaPruning) :+
GroupBasedRowLevelOperationScanPlanning :+
V1Writes :+
V2ScanRelationPushDown :+
V2ScanPartitioningAndOrdering :+
V2Writes :+
PruneFileSourcePartitions
override def preCBORules: Seq[Rule[LogicalPlan]] =
OptimizeMetadataOnlyDeleteFromTable :: Nil
override def defaultBatches: Seq[Batch] = (preOptimizationBatches ++ super.defaultBatches :+
Batch("Optimize Metadata Only Query", Once, OptimizeMetadataOnlyQuery(catalog)) :+
Batch("PartitionPruning", Once,
PartitionPruning,
// We can't run `OptimizeSubqueries` in this batch, as it will optimize the subqueries
// twice which may break some optimizer rules that can only be applied once. The rule below
// only invokes `OptimizeSubqueries` to optimize newly added subqueries.
new RowLevelOperationRuntimeGroupFiltering(OptimizeSubqueries)) :+
Batch("InjectRuntimeFilter", FixedPoint(1),
InjectRuntimeFilter) :+
Batch("MergeScalarSubqueries", Once,
MergeScalarSubqueries,
RewriteDistinctAggregates) :+
Batch("Pushdown Filters from PartitionPruning", fixedPoint,
PushDownPredicates) :+
Batch("Cleanup filters that cannot be pushed down", Once,
CleanupDynamicPruningFilters,
// cleanup the unnecessary TrueLiteral predicates
BooleanSimplification,
PruneFilters)) ++
postHocOptimizationBatches :+
Batch("Extract Python UDFs", Once,
ExtractPythonUDFFromJoinCondition,
// `ExtractPythonUDFFromJoinCondition` can convert a join to a cartesian product.
// Here, we rerun cartesian product check.
CheckCartesianProducts,
ExtractPythonUDFFromAggregate,
// This must be executed after `ExtractPythonUDFFromAggregate` and before `ExtractPythonUDFs`.
ExtractGroupingPythonUDFFromAggregate,
ExtractPythonUDFs,
ExtractPythonUDTFs,
// The eval-python node may be between Project/Filter and the scan node, which breaks
// column pruning and filter push-down. Here we rerun the related optimizer rules.
ColumnPruning,
LimitPushDown,
PushPredicateThroughNonJoin,
PushProjectionThroughLimit,
RemoveNoopOperators) :+
Batch("Infer window group limit", Once,
InferWindowGroupLimit,
LimitPushDown,
LimitPushDownThroughWindow,
EliminateLimits,
ConstantFolding) :+
Batch("User Provided Optimizers", fixedPoint, experimentalMethods.extraOptimizations: _*) :+
Batch("Replace CTE with Repartition", Once, ReplaceCTERefWithRepartition)
override def nonExcludableRules: Seq[String] = super.nonExcludableRules :+
ExtractPythonUDFFromJoinCondition.ruleName :+
ExtractPythonUDFFromAggregate.ruleName :+ ExtractGroupingPythonUDFFromAggregate.ruleName :+
ExtractPythonUDFs.ruleName :+
GroupBasedRowLevelOperationScanPlanning.ruleName :+
V2ScanRelationPushDown.ruleName :+
V2ScanPartitioningAndOrdering.ruleName :+
V2Writes.ruleName :+
ReplaceCTERefWithRepartition.ruleName
/**
* Optimization batches that are executed before the regular optimization batches (also before
* the finish analysis batch).
*/
def preOptimizationBatches: Seq[Batch] = Nil
/**
* Optimization batches that are executed after the regular optimization batches, but before the
* batch executing the [[ExperimentalMethods]] optimizer rules. This hook can be used to add
* custom optimizer batches to the Spark optimizer.
*
* Note that 'Extract Python UDFs' batch is an exception and ran after the batches defined here.
*/
def postHocOptimizationBatches: Seq[Batch] = Nil
}