All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.spark.sql.functions.scala Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql

import scala.collection.JavaConverters._
import scala.reflect.runtime.universe.TypeTag
import scala.util.Try

import org.apache.spark.annotation.Stable
import org.apache.spark.sql.api.java._
import org.apache.spark.sql.catalyst.ScalaReflection
import org.apache.spark.sql.catalyst.analysis.{Star, UnresolvedFunction}
import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.expressions.aggregate._
import org.apache.spark.sql.catalyst.expressions.xml._
import org.apache.spark.sql.catalyst.plans.logical.{BROADCAST, HintInfo, ResolvedHint}
import org.apache.spark.sql.catalyst.util.{CharVarcharUtils, TimestampFormatter}
import org.apache.spark.sql.errors.QueryCompilationErrors
import org.apache.spark.sql.execution.SparkSqlParser
import org.apache.spark.sql.expressions.{Aggregator, SparkUserDefinedFunction, UserDefinedAggregator, UserDefinedFunction}
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.types._
import org.apache.spark.sql.types.DataType.parseTypeWithFallback
import org.apache.spark.util.Utils

/**
 * Commonly used functions available for DataFrame operations. Using functions defined here provides
 * a little bit more compile-time safety to make sure the function exists.
 *
 * Spark also includes more built-in functions that are less common and are not defined here.
 * You can still access them (and all the functions defined here) using the `functions.expr()` API
 * and calling them through a SQL expression string. You can find the entire list of functions
 * at SQL API documentation of your Spark version, see also
 * the latest list
 *
 * As an example, `isnan` is a function that is defined here. You can use `isnan(col("myCol"))`
 * to invoke the `isnan` function. This way the programming language's compiler ensures `isnan`
 * exists and is of the proper form. You can also use `expr("isnan(myCol)")` function to invoke the
 * same function. In this case, Spark itself will ensure `isnan` exists when it analyzes the query.
 *
 * `regr_count` is an example of a function that is built-in but not defined here, because it is
 * less commonly used. To invoke it, use `expr("regr_count(yCol, xCol)")`.
 *
 * This function APIs usually have methods with `Column` signature only because it can support not
 * only `Column` but also other types such as a native string. The other variants currently exist
 * for historical reasons.
 *
 * @groupname udf_funcs UDF functions
 * @groupname agg_funcs Aggregate functions
 * @groupname datetime_funcs Date time functions
 * @groupname sort_funcs Sorting functions
 * @groupname normal_funcs Non-aggregate functions
 * @groupname math_funcs Math functions
 * @groupname misc_funcs Misc functions
 * @groupname window_funcs Window functions
 * @groupname string_funcs String functions
 * @groupname collection_funcs Collection functions
 * @groupname partition_transforms Partition transform functions
 * @groupname Ungrouped Support functions for DataFrames
 * @since 1.3.0
 */
@Stable
// scalastyle:off
object functions {
// scalastyle:on

  private def withExpr(expr: Expression): Column = Column(expr)

  private def withAggregateFunction(
    func: AggregateFunction,
    isDistinct: Boolean = false): Column = {
    Column(func.toAggregateExpression(isDistinct))
  }

  /**
   * Returns a [[Column]] based on the given column name.
   *
   * @group normal_funcs
   * @since 1.3.0
   */
  def col(colName: String): Column = Column(colName)

  /**
   * Returns a [[Column]] based on the given column name. Alias of [[col]].
   *
   * @group normal_funcs
   * @since 1.3.0
   */
  def column(colName: String): Column = Column(colName)

  /**
   * Creates a [[Column]] of literal value.
   *
   * The passed in object is returned directly if it is already a [[Column]].
   * If the object is a Scala Symbol, it is converted into a [[Column]] also.
   * Otherwise, a new [[Column]] is created to represent the literal value.
   *
   * @group normal_funcs
   * @since 1.3.0
   */
  def lit(literal: Any): Column = literal match {
    case c: Column => c
    case s: Symbol => new ColumnName(s.name)
    case _ =>
      // This is different from `typedlit`. `typedlit` calls `Literal.create` to use
      // `ScalaReflection` to get the type of `literal`. However, since we use `Any` in this method,
      // `typedLit[Any](literal)` will always fail and fallback to `Literal.apply`. Hence, we can
      // just manually call `Literal.apply` to skip the expensive `ScalaReflection` code. This is
      // significantly better when there are many threads calling `lit` concurrently.
      Column(Literal(literal))
  }

  /**
   * Creates a [[Column]] of literal value.
   *
   * An alias of `typedlit`, and it is encouraged to use `typedlit` directly.
   *
   * @group normal_funcs
   * @since 2.2.0
   */
  def typedLit[T : TypeTag](literal: T): Column = typedlit(literal)

  /**
   * Creates a [[Column]] of literal value.
   *
   * The passed in object is returned directly if it is already a [[Column]].
   * If the object is a Scala Symbol, it is converted into a [[Column]] also.
   * Otherwise, a new [[Column]] is created to represent the literal value.
   * The difference between this function and [[lit]] is that this function
   * can handle parameterized scala types e.g.: List, Seq and Map.
   *
   * @note `typedlit` will call expensive Scala reflection APIs. `lit` is preferred if parameterized
   * Scala types are not used.
   *
   * @group normal_funcs
   * @since 3.2.0
   */
  def typedlit[T : TypeTag](literal: T): Column = literal match {
    case c: Column => c
    case s: Symbol => new ColumnName(s.name)
    case _ => Column(Literal.create(literal))
  }

  //////////////////////////////////////////////////////////////////////////////////////////////
  // Sort functions
  //////////////////////////////////////////////////////////////////////////////////////////////

  /**
   * Returns a sort expression based on ascending order of the column.
   * {{{
   *   df.sort(asc("dept"), desc("age"))
   * }}}
   *
   * @group sort_funcs
   * @since 1.3.0
   */
  def asc(columnName: String): Column = Column(columnName).asc

  /**
   * Returns a sort expression based on ascending order of the column,
   * and null values return before non-null values.
   * {{{
   *   df.sort(asc_nulls_first("dept"), desc("age"))
   * }}}
   *
   * @group sort_funcs
   * @since 2.1.0
   */
  def asc_nulls_first(columnName: String): Column = Column(columnName).asc_nulls_first

  /**
   * Returns a sort expression based on ascending order of the column,
   * and null values appear after non-null values.
   * {{{
   *   df.sort(asc_nulls_last("dept"), desc("age"))
   * }}}
   *
   * @group sort_funcs
   * @since 2.1.0
   */
  def asc_nulls_last(columnName: String): Column = Column(columnName).asc_nulls_last

  /**
   * Returns a sort expression based on the descending order of the column.
   * {{{
   *   df.sort(asc("dept"), desc("age"))
   * }}}
   *
   * @group sort_funcs
   * @since 1.3.0
   */
  def desc(columnName: String): Column = Column(columnName).desc

  /**
   * Returns a sort expression based on the descending order of the column,
   * and null values appear before non-null values.
   * {{{
   *   df.sort(asc("dept"), desc_nulls_first("age"))
   * }}}
   *
   * @group sort_funcs
   * @since 2.1.0
   */
  def desc_nulls_first(columnName: String): Column = Column(columnName).desc_nulls_first

  /**
   * Returns a sort expression based on the descending order of the column,
   * and null values appear after non-null values.
   * {{{
   *   df.sort(asc("dept"), desc_nulls_last("age"))
   * }}}
   *
   * @group sort_funcs
   * @since 2.1.0
   */
  def desc_nulls_last(columnName: String): Column = Column(columnName).desc_nulls_last


  //////////////////////////////////////////////////////////////////////////////////////////////
  // Aggregate functions
  //////////////////////////////////////////////////////////////////////////////////////////////

  /**
   * @group agg_funcs
   * @since 1.3.0
   */
  @deprecated("Use approx_count_distinct", "2.1.0")
  def approxCountDistinct(e: Column): Column = approx_count_distinct(e)

  /**
   * @group agg_funcs
   * @since 1.3.0
   */
  @deprecated("Use approx_count_distinct", "2.1.0")
  def approxCountDistinct(columnName: String): Column = approx_count_distinct(columnName)

  /**
   * @group agg_funcs
   * @since 1.3.0
   */
  @deprecated("Use approx_count_distinct", "2.1.0")
  def approxCountDistinct(e: Column, rsd: Double): Column = approx_count_distinct(e, rsd)

  /**
   * @group agg_funcs
   * @since 1.3.0
   */
  @deprecated("Use approx_count_distinct", "2.1.0")
  def approxCountDistinct(columnName: String, rsd: Double): Column = {
    approx_count_distinct(Column(columnName), rsd)
  }

  /**
   * Aggregate function: returns the approximate number of distinct items in a group.
   *
   * @group agg_funcs
   * @since 2.1.0
   */
  def approx_count_distinct(e: Column): Column = withAggregateFunction {
    HyperLogLogPlusPlus(e.expr)
  }

  /**
   * Aggregate function: returns the approximate number of distinct items in a group.
   *
   * @group agg_funcs
   * @since 2.1.0
   */
  def approx_count_distinct(columnName: String): Column = approx_count_distinct(column(columnName))

  /**
   * Aggregate function: returns the approximate number of distinct items in a group.
   *
   * @param rsd maximum relative standard deviation allowed (default = 0.05)
   *
   * @group agg_funcs
   * @since 2.1.0
   */
  def approx_count_distinct(e: Column, rsd: Double): Column = withAggregateFunction {
    HyperLogLogPlusPlus(e.expr, rsd, 0, 0)
  }

  /**
   * Aggregate function: returns the approximate number of distinct items in a group.
   *
   * @param rsd maximum relative standard deviation allowed (default = 0.05)
   *
   * @group agg_funcs
   * @since 2.1.0
   */
  def approx_count_distinct(columnName: String, rsd: Double): Column = {
    approx_count_distinct(Column(columnName), rsd)
  }

  /**
   * Aggregate function: returns the average of the values in a group.
   *
   * @group agg_funcs
   * @since 1.3.0
   */
  def avg(e: Column): Column = withAggregateFunction { Average(e.expr) }

  /**
   * Aggregate function: returns the average of the values in a group.
   *
   * @group agg_funcs
   * @since 1.3.0
   */
  def avg(columnName: String): Column = avg(Column(columnName))

  /**
   * Aggregate function: returns a list of objects with duplicates.
   *
   * @note The function is non-deterministic because the order of collected results depends
   * on the order of the rows which may be non-deterministic after a shuffle.
   *
   * @group agg_funcs
   * @since 1.6.0
   */
  def collect_list(e: Column): Column = withAggregateFunction { CollectList(e.expr) }

  /**
   * Aggregate function: returns a list of objects with duplicates.
   *
   * @note The function is non-deterministic because the order of collected results depends
   * on the order of the rows which may be non-deterministic after a shuffle.
   *
   * @group agg_funcs
   * @since 1.6.0
   */
  def collect_list(columnName: String): Column = collect_list(Column(columnName))

  /**
   * Aggregate function: returns a set of objects with duplicate elements eliminated.
   *
   * @note The function is non-deterministic because the order of collected results depends
   * on the order of the rows which may be non-deterministic after a shuffle.
   *
   * @group agg_funcs
   * @since 1.6.0
   */
  def collect_set(e: Column): Column = withAggregateFunction { CollectSet(e.expr) }

  /**
   * Aggregate function: returns a set of objects with duplicate elements eliminated.
   *
   * @note The function is non-deterministic because the order of collected results depends
   * on the order of the rows which may be non-deterministic after a shuffle.
   *
   * @group agg_funcs
   * @since 1.6.0
   */
  def collect_set(columnName: String): Column = collect_set(Column(columnName))

  /**
   * Returns a count-min sketch of a column with the given esp, confidence and seed. The result
   * is an array of bytes, which can be deserialized to a `CountMinSketch` before usage.
   * Count-min sketch is a probabilistic data structure used for cardinality estimation using
   * sub-linear space.
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def count_min_sketch(
    e: Column,
    eps: Column,
    confidence: Column,
    seed: Column): Column = withAggregateFunction {
    new CountMinSketchAgg(e.expr, eps.expr, confidence.expr, seed.expr)
  }

  private[spark] def collect_top_k(e: Column, num: Int, reverse: Boolean): Column =
    withAggregateFunction { CollectTopK(e.expr, num, reverse) }

  /**
   * Aggregate function: returns the Pearson Correlation Coefficient for two columns.
   *
   * @group agg_funcs
   * @since 1.6.0
   */
  def corr(column1: Column, column2: Column): Column = withAggregateFunction {
    Corr(column1.expr, column2.expr)
  }

  /**
   * Aggregate function: returns the Pearson Correlation Coefficient for two columns.
   *
   * @group agg_funcs
   * @since 1.6.0
   */
  def corr(columnName1: String, columnName2: String): Column = {
    corr(Column(columnName1), Column(columnName2))
  }

  /**
   * Aggregate function: returns the number of items in a group.
   *
   * @group agg_funcs
   * @since 1.3.0
   */
  def count(e: Column): Column = withAggregateFunction {
    e.expr match {
      // Turn count(*) into count(1)
      case s: Star => Count(Literal(1))
      case _ => Count(e.expr)
    }
  }

  /**
   * Aggregate function: returns the number of items in a group.
   *
   * @group agg_funcs
   * @since 1.3.0
   */
  def count(columnName: String): TypedColumn[Any, Long] =
    count(Column(columnName)).as(ExpressionEncoder[Long]())

  /**
   * Aggregate function: returns the number of distinct items in a group.
   *
   * An alias of `count_distinct`, and it is encouraged to use `count_distinct` directly.
   *
   * @group agg_funcs
   * @since 1.3.0
   */
  @scala.annotation.varargs
  def countDistinct(expr: Column, exprs: Column*): Column = count_distinct(expr, exprs: _*)

  /**
   * Aggregate function: returns the number of distinct items in a group.
   *
   * An alias of `count_distinct`, and it is encouraged to use `count_distinct` directly.
   *
   * @group agg_funcs
   * @since 1.3.0
   */
  @scala.annotation.varargs
  def countDistinct(columnName: String, columnNames: String*): Column =
    count_distinct(Column(columnName), columnNames.map(Column.apply) : _*)

  /**
   * Aggregate function: returns the number of distinct items in a group.
   *
   * @group agg_funcs
   * @since 3.2.0
   */
  @scala.annotation.varargs
  def count_distinct(expr: Column, exprs: Column*): Column =
    // For usage like countDistinct("*"), we should let analyzer expand star and
    // resolve function.
    Column(UnresolvedFunction("count", (expr +: exprs).map(_.expr), isDistinct = true))

  /**
   * Aggregate function: returns the population covariance for two columns.
   *
   * @group agg_funcs
   * @since 2.0.0
   */
  def covar_pop(column1: Column, column2: Column): Column = withAggregateFunction {
    CovPopulation(column1.expr, column2.expr)
  }

  /**
   * Aggregate function: returns the population covariance for two columns.
   *
   * @group agg_funcs
   * @since 2.0.0
   */
  def covar_pop(columnName1: String, columnName2: String): Column = {
    covar_pop(Column(columnName1), Column(columnName2))
  }

  /**
   * Aggregate function: returns the sample covariance for two columns.
   *
   * @group agg_funcs
   * @since 2.0.0
   */
  def covar_samp(column1: Column, column2: Column): Column = withAggregateFunction {
    CovSample(column1.expr, column2.expr)
  }

  /**
   * Aggregate function: returns the sample covariance for two columns.
   *
   * @group agg_funcs
   * @since 2.0.0
   */
  def covar_samp(columnName1: String, columnName2: String): Column = {
    covar_samp(Column(columnName1), Column(columnName2))
  }

  /**
   * Aggregate function: returns the first value in a group.
   *
   * The function by default returns the first values it sees. It will return the first non-null
   * value it sees when ignoreNulls is set to true. If all values are null, then null is returned.
   *
   * @note The function is non-deterministic because its results depends on the order of the rows
   * which may be non-deterministic after a shuffle.
   *
   * @group agg_funcs
   * @since 2.0.0
   */
  def first(e: Column, ignoreNulls: Boolean): Column = withAggregateFunction {
    First(e.expr, ignoreNulls)
  }

  /**
   * Aggregate function: returns the first value of a column in a group.
   *
   * The function by default returns the first values it sees. It will return the first non-null
   * value it sees when ignoreNulls is set to true. If all values are null, then null is returned.
   *
   * @note The function is non-deterministic because its results depends on the order of the rows
   * which may be non-deterministic after a shuffle.
   *
   * @group agg_funcs
   * @since 2.0.0
   */
  def first(columnName: String, ignoreNulls: Boolean): Column = {
    first(Column(columnName), ignoreNulls)
  }

  /**
   * Aggregate function: returns the first value in a group.
   *
   * The function by default returns the first values it sees. It will return the first non-null
   * value it sees when ignoreNulls is set to true. If all values are null, then null is returned.
   *
   * @note The function is non-deterministic because its results depends on the order of the rows
   * which may be non-deterministic after a shuffle.
   *
   * @group agg_funcs
   * @since 1.3.0
   */
  def first(e: Column): Column = first(e, ignoreNulls = false)

  /**
   * Aggregate function: returns the first value of a column in a group.
   *
   * The function by default returns the first values it sees. It will return the first non-null
   * value it sees when ignoreNulls is set to true. If all values are null, then null is returned.
   *
   * @note The function is non-deterministic because its results depends on the order of the rows
   * which may be non-deterministic after a shuffle.
   *
   * @group agg_funcs
   * @since 1.3.0
   */
  def first(columnName: String): Column = first(Column(columnName))

  /**
   * Aggregate function: returns the first value in a group.
   *
   * @note The function is non-deterministic because its results depends on the order of the rows
   * which may be non-deterministic after a shuffle.
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def first_value(e: Column): Column = call_function("first_value", e)

  /**
   * Aggregate function: returns the first value in a group.
   *
   * The function by default returns the first values it sees. It will return the first non-null
   * value it sees when ignoreNulls is set to true. If all values are null, then null is returned.
   *
   * @note The function is non-deterministic because its results depends on the order of the rows
   * which may be non-deterministic after a shuffle.
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def first_value(e: Column, ignoreNulls: Column): Column =
    call_function("first_value", e, ignoreNulls)

  /**
   * Aggregate function: indicates whether a specified column in a GROUP BY list is aggregated
   * or not, returns 1 for aggregated or 0 for not aggregated in the result set.
   *
   * @group agg_funcs
   * @since 2.0.0
   */
  def grouping(e: Column): Column = Column(Grouping(e.expr))

  /**
   * Aggregate function: indicates whether a specified column in a GROUP BY list is aggregated
   * or not, returns 1 for aggregated or 0 for not aggregated in the result set.
   *
   * @group agg_funcs
   * @since 2.0.0
   */
  def grouping(columnName: String): Column = grouping(Column(columnName))

  /**
   * Aggregate function: returns the level of grouping, equals to
   *
   * {{{
   *   (grouping(c1) <<; (n-1)) + (grouping(c2) <<; (n-2)) + ... + grouping(cn)
   * }}}
   *
   * @note The list of columns should match with grouping columns exactly, or empty (means all the
   * grouping columns).
   *
   * @group agg_funcs
   * @since 2.0.0
   */
  def grouping_id(cols: Column*): Column = Column(GroupingID(cols.map(_.expr)))

  /**
   * Aggregate function: returns the level of grouping, equals to
   *
   * {{{
   *   (grouping(c1) <<; (n-1)) + (grouping(c2) <<; (n-2)) + ... + grouping(cn)
   * }}}
   *
   * @note The list of columns should match with grouping columns exactly.
   *
   * @group agg_funcs
   * @since 2.0.0
   */
  def grouping_id(colName: String, colNames: String*): Column = {
    grouping_id((Seq(colName) ++ colNames).map(n => Column(n)) : _*)
  }

  /**
   * Aggregate function: returns the updatable binary representation of the Datasketches
   * HllSketch configured with lgConfigK arg.
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def hll_sketch_agg(e: Column, lgConfigK: Column): Column = withAggregateFunction {
    HllSketchAgg(e.expr, lgConfigK.expr)
  }

  /**
   * Aggregate function: returns the updatable binary representation of the Datasketches
   * HllSketch configured with lgConfigK arg.
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def hll_sketch_agg(e: Column, lgConfigK: Int): Column =
    withAggregateFunction {
      new HllSketchAgg(e.expr, Literal(lgConfigK))
    }

  /**
   * Aggregate function: returns the updatable binary representation of the Datasketches
   * HllSketch configured with lgConfigK arg.
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def hll_sketch_agg(columnName: String, lgConfigK: Int): Column = {
    hll_sketch_agg(Column(columnName), lgConfigK)
  }

  /**
   * Aggregate function: returns the updatable binary representation of the Datasketches
   * HllSketch configured with default lgConfigK value.
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def hll_sketch_agg(e: Column): Column = withAggregateFunction {
    new HllSketchAgg(e.expr)
  }

  /**
   * Aggregate function: returns the updatable binary representation of the Datasketches
   * HllSketch configured with default lgConfigK value.
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def hll_sketch_agg(columnName: String): Column = {
    hll_sketch_agg(Column(columnName))
  }

  /**
   * Aggregate function: returns the updatable binary representation of the Datasketches
   * HllSketch, generated by merging previously created Datasketches HllSketch instances
   * via a Datasketches Union instance. Throws an exception if sketches have different
   * lgConfigK values and allowDifferentLgConfigK is set to false.
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def hll_union_agg(e: Column, allowDifferentLgConfigK: Column): Column = withAggregateFunction {
    new HllUnionAgg(e.expr, allowDifferentLgConfigK.expr)
  }

  /**
   * Aggregate function: returns the updatable binary representation of the Datasketches
   * HllSketch, generated by merging previously created Datasketches HllSketch instances
   * via a Datasketches Union instance. Throws an exception if sketches have different
   * lgConfigK values and allowDifferentLgConfigK is set to false.
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def hll_union_agg(e: Column, allowDifferentLgConfigK: Boolean): Column = withAggregateFunction {
    new HllUnionAgg(e.expr, allowDifferentLgConfigK)
  }

  /**
   * Aggregate function: returns the updatable binary representation of the Datasketches
   * HllSketch, generated by merging previously created Datasketches HllSketch instances
   * via a Datasketches Union instance. Throws an exception if sketches have different
   * lgConfigK values and allowDifferentLgConfigK is set to false.
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def hll_union_agg(columnName: String, allowDifferentLgConfigK: Boolean): Column = {
    hll_union_agg(Column(columnName), allowDifferentLgConfigK)
  }

  /**
   * Aggregate function: returns the updatable binary representation of the Datasketches
   * HllSketch, generated by merging previously created Datasketches HllSketch instances
   * via a Datasketches Union instance. Throws an exception if sketches have different
   * lgConfigK values.
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def hll_union_agg(e: Column): Column = withAggregateFunction {
    new HllUnionAgg(e.expr)
  }

  /**
   * Aggregate function: returns the updatable binary representation of the Datasketches
   * HllSketch, generated by merging previously created Datasketches HllSketch instances
   * via a Datasketches Union instance. Throws an exception if sketches have different
   * lgConfigK values.
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def hll_union_agg(columnName: String): Column = {
    hll_union_agg(Column(columnName))
  }

  /**
   * Aggregate function: returns the kurtosis of the values in a group.
   *
   * @group agg_funcs
   * @since 1.6.0
   */
  def kurtosis(e: Column): Column = withAggregateFunction { Kurtosis(e.expr) }

  /**
   * Aggregate function: returns the kurtosis of the values in a group.
   *
   * @group agg_funcs
   * @since 1.6.0
   */
  def kurtosis(columnName: String): Column = kurtosis(Column(columnName))

  /**
   * Aggregate function: returns the last value in a group.
   *
   * The function by default returns the last values it sees. It will return the last non-null
   * value it sees when ignoreNulls is set to true. If all values are null, then null is returned.
   *
   * @note The function is non-deterministic because its results depends on the order of the rows
   * which may be non-deterministic after a shuffle.
   *
   * @group agg_funcs
   * @since 2.0.0
   */
  def last(e: Column, ignoreNulls: Boolean): Column = withAggregateFunction {
    Last(e.expr, ignoreNulls)
  }

  /**
   * Aggregate function: returns the last value of the column in a group.
   *
   * The function by default returns the last values it sees. It will return the last non-null
   * value it sees when ignoreNulls is set to true. If all values are null, then null is returned.
   *
   * @note The function is non-deterministic because its results depends on the order of the rows
   * which may be non-deterministic after a shuffle.
   *
   * @group agg_funcs
   * @since 2.0.0
   */
  def last(columnName: String, ignoreNulls: Boolean): Column = {
    last(Column(columnName), ignoreNulls)
  }

  /**
   * Aggregate function: returns the last value in a group.
   *
   * The function by default returns the last values it sees. It will return the last non-null
   * value it sees when ignoreNulls is set to true. If all values are null, then null is returned.
   *
   * @note The function is non-deterministic because its results depends on the order of the rows
   * which may be non-deterministic after a shuffle.
   *
   * @group agg_funcs
   * @since 1.3.0
   */
  def last(e: Column): Column = last(e, ignoreNulls = false)

  /**
   * Aggregate function: returns the last value of the column in a group.
   *
   * The function by default returns the last values it sees. It will return the last non-null
   * value it sees when ignoreNulls is set to true. If all values are null, then null is returned.
   *
   * @note The function is non-deterministic because its results depends on the order of the rows
   * which may be non-deterministic after a shuffle.
   *
   * @group agg_funcs
   * @since 1.3.0
   */
  def last(columnName: String): Column = last(Column(columnName), ignoreNulls = false)

  /**
   * Aggregate function: returns the last value in a group.
   *
   * @note The function is non-deterministic because its results depends on the order of the rows
   * which may be non-deterministic after a shuffle.
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def last_value(e: Column): Column = call_function("last_value", e)

  /**
   * Aggregate function: returns the last value in a group.
   *
   * The function by default returns the last values it sees. It will return the last non-null
   * value it sees when ignoreNulls is set to true. If all values are null, then null is returned.
   *
   * @note The function is non-deterministic because its results depends on the order of the rows
   * which may be non-deterministic after a shuffle.
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def last_value(e: Column, ignoreNulls: Column): Column =
    call_function("last_value", e, ignoreNulls)

  /**
   * Aggregate function: returns the most frequent value in a group.
   *
   * @group agg_funcs
   * @since 3.4.0
   */
  def mode(e: Column): Column = withAggregateFunction { Mode(e.expr) }

  /**
   * Aggregate function: returns the maximum value of the expression in a group.
   *
   * @group agg_funcs
   * @since 1.3.0
   */
  def max(e: Column): Column = withAggregateFunction { Max(e.expr) }

  /**
   * Aggregate function: returns the maximum value of the column in a group.
   *
   * @group agg_funcs
   * @since 1.3.0
   */
  def max(columnName: String): Column = max(Column(columnName))

  /**
   * Aggregate function: returns the value associated with the maximum value of ord.
   *
   * @group agg_funcs
   * @since 3.3.0
   */
  def max_by(e: Column, ord: Column): Column = withAggregateFunction { MaxBy(e.expr, ord.expr) }

  /**
   * Aggregate function: returns the average of the values in a group.
   * Alias for avg.
   *
   * @group agg_funcs
   * @since 1.4.0
   */
  def mean(e: Column): Column = avg(e)

  /**
   * Aggregate function: returns the average of the values in a group.
   * Alias for avg.
   *
   * @group agg_funcs
   * @since 1.4.0
   */
  def mean(columnName: String): Column = avg(columnName)

  /**
   * Aggregate function: returns the median of the values in a group.
   *
   * @group agg_funcs
   * @since 3.4.0
   */
  def median(e: Column): Column = withAggregateFunction { Median(e.expr) }

  /**
   * Aggregate function: returns the minimum value of the expression in a group.
   *
   * @group agg_funcs
   * @since 1.3.0
   */
  def min(e: Column): Column = withAggregateFunction { Min(e.expr) }

  /**
   * Aggregate function: returns the minimum value of the column in a group.
   *
   * @group agg_funcs
   * @since 1.3.0
   */
  def min(columnName: String): Column = min(Column(columnName))

  /**
   * Aggregate function: returns the value associated with the minimum value of ord.
   *
   * @group agg_funcs
   * @since 3.3.0
   */
  def min_by(e: Column, ord: Column): Column = withAggregateFunction { MinBy(e.expr, ord.expr) }

  /**
   * Aggregate function: returns the exact percentile(s) of numeric column `expr` at the
   * given percentage(s) with value range in [0.0, 1.0].
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def percentile(e: Column, percentage: Column): Column = {
    withAggregateFunction {
      new Percentile(e.expr, percentage.expr)
    }
  }

  /**
   * Aggregate function: returns the exact percentile(s) of numeric column `expr` at the
   * given percentage(s) with value range in [0.0, 1.0].
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def percentile(
      e: Column,
      percentage: Column,
      frequency: Column): Column = {
    withAggregateFunction {
      new Percentile(e.expr, percentage.expr, frequency.expr)
    }
  }

  /**
   * Aggregate function: returns the approximate `percentile` of the numeric column `col` which
   * is the smallest value in the ordered `col` values (sorted from least to greatest) such that
   * no more than `percentage` of `col` values is less than the value or equal to that value.
   *
   * If percentage is an array, each value must be between 0.0 and 1.0.
   * If it is a single floating point value, it must be between 0.0 and 1.0.
   *
   * The accuracy parameter is a positive numeric literal
   * which controls approximation accuracy at the cost of memory.
   * Higher value of accuracy yields better accuracy, 1.0/accuracy
   * is the relative error of the approximation.
   *
   * @group agg_funcs
   * @since 3.1.0
   */
  def percentile_approx(e: Column, percentage: Column, accuracy: Column): Column = {
    withAggregateFunction {
      new ApproximatePercentile(
        e.expr, percentage.expr, accuracy.expr
      )
    }
  }

  /**
   * Aggregate function: returns the approximate `percentile` of the numeric column `col` which
   * is the smallest value in the ordered `col` values (sorted from least to greatest) such that
   * no more than `percentage` of `col` values is less than the value or equal to that value.
   *
   * If percentage is an array, each value must be between 0.0 and 1.0.
   * If it is a single floating point value, it must be between 0.0 and 1.0.
   *
   * The accuracy parameter is a positive numeric literal
   * which controls approximation accuracy at the cost of memory.
   * Higher value of accuracy yields better accuracy, 1.0/accuracy
   * is the relative error of the approximation.
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def approx_percentile(e: Column, percentage: Column, accuracy: Column): Column =
    call_function("approx_percentile", e, percentage, accuracy)

  /**
   * Aggregate function: returns the product of all numerical elements in a group.
   *
   * @group agg_funcs
   * @since 3.2.0
   */
  def product(e: Column): Column =
    withAggregateFunction { new Product(e.expr) }

  /**
   * Aggregate function: returns the skewness of the values in a group.
   *
   * @group agg_funcs
   * @since 1.6.0
   */
  def skewness(e: Column): Column = withAggregateFunction { Skewness(e.expr) }

  /**
   * Aggregate function: returns the skewness of the values in a group.
   *
   * @group agg_funcs
   * @since 1.6.0
   */
  def skewness(columnName: String): Column = skewness(Column(columnName))

  /**
   * Aggregate function: alias for `stddev_samp`.
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def std(e: Column): Column = call_function("std", e)

  /**
   * Aggregate function: alias for `stddev_samp`.
   *
   * @group agg_funcs
   * @since 1.6.0
   */
  def stddev(e: Column): Column = call_function("stddev", e)

  /**
   * Aggregate function: alias for `stddev_samp`.
   *
   * @group agg_funcs
   * @since 1.6.0
   */
  def stddev(columnName: String): Column = stddev(Column(columnName))

  /**
   * Aggregate function: returns the sample standard deviation of
   * the expression in a group.
   *
   * @group agg_funcs
   * @since 1.6.0
   */
  def stddev_samp(e: Column): Column = withAggregateFunction { StddevSamp(e.expr) }

  /**
   * Aggregate function: returns the sample standard deviation of
   * the expression in a group.
   *
   * @group agg_funcs
   * @since 1.6.0
   */
  def stddev_samp(columnName: String): Column = stddev_samp(Column(columnName))

  /**
   * Aggregate function: returns the population standard deviation of
   * the expression in a group.
   *
   * @group agg_funcs
   * @since 1.6.0
   */
  def stddev_pop(e: Column): Column = withAggregateFunction { StddevPop(e.expr) }

  /**
   * Aggregate function: returns the population standard deviation of
   * the expression in a group.
   *
   * @group agg_funcs
   * @since 1.6.0
   */
  def stddev_pop(columnName: String): Column = stddev_pop(Column(columnName))

  /**
   * Aggregate function: returns the sum of all values in the expression.
   *
   * @group agg_funcs
   * @since 1.3.0
   */
  def sum(e: Column): Column = withAggregateFunction { Sum(e.expr) }

  /**
   * Aggregate function: returns the sum of all values in the given column.
   *
   * @group agg_funcs
   * @since 1.3.0
   */
  def sum(columnName: String): Column = sum(Column(columnName))

  /**
   * Aggregate function: returns the sum of distinct values in the expression.
   *
   * @group agg_funcs
   * @since 1.3.0
   */
  @deprecated("Use sum_distinct", "3.2.0")
  def sumDistinct(e: Column): Column = withAggregateFunction(Sum(e.expr), isDistinct = true)

  /**
   * Aggregate function: returns the sum of distinct values in the expression.
   *
   * @group agg_funcs
   * @since 1.3.0
   */
  @deprecated("Use sum_distinct", "3.2.0")
  def sumDistinct(columnName: String): Column = sum_distinct(Column(columnName))

  /**
   * Aggregate function: returns the sum of distinct values in the expression.
   *
   * @group agg_funcs
   * @since 3.2.0
   */
  def sum_distinct(e: Column): Column = withAggregateFunction(Sum(e.expr), isDistinct = true)

  /**
   * Aggregate function: alias for `var_samp`.
   *
   * @group agg_funcs
   * @since 1.6.0
   */
  def variance(e: Column): Column = withAggregateFunction { VarianceSamp(e.expr) }

  /**
   * Aggregate function: alias for `var_samp`.
   *
   * @group agg_funcs
   * @since 1.6.0
   */
  def variance(columnName: String): Column = variance(Column(columnName))

  /**
   * Aggregate function: returns the unbiased variance of the values in a group.
   *
   * @group agg_funcs
   * @since 1.6.0
   */
  def var_samp(e: Column): Column = withAggregateFunction { VarianceSamp(e.expr) }

  /**
   * Aggregate function: returns the unbiased variance of the values in a group.
   *
   * @group agg_funcs
   * @since 1.6.0
   */
  def var_samp(columnName: String): Column = var_samp(Column(columnName))

  /**
   * Aggregate function: returns the population variance of the values in a group.
   *
   * @group agg_funcs
   * @since 1.6.0
   */
  def var_pop(e: Column): Column = withAggregateFunction { VariancePop(e.expr) }

  /**
   * Aggregate function: returns the population variance of the values in a group.
   *
   * @group agg_funcs
   * @since 1.6.0
   */
  def var_pop(columnName: String): Column = var_pop(Column(columnName))

  /**
   * Aggregate function: returns the average of the independent variable for non-null pairs
   * in a group, where `y` is the dependent variable and `x` is the independent variable.
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def regr_avgx(y: Column, x: Column): Column = withAggregateFunction { RegrAvgX(y.expr, x.expr) }

  /**
   * Aggregate function: returns the average of the independent variable for non-null pairs
   * in a group, where `y` is the dependent variable and `x` is the independent variable.
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def regr_avgy(y: Column, x: Column): Column = withAggregateFunction { RegrAvgY(y.expr, x.expr) }

  /**
   * Aggregate function: returns the number of non-null number pairs
   * in a group, where `y` is the dependent variable and `x` is the independent variable.
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def regr_count(y: Column, x: Column): Column = withAggregateFunction { RegrCount(y.expr, x.expr) }

  /**
   * Aggregate function: returns the intercept of the univariate linear regression line
   * for non-null pairs in a group, where `y` is the dependent variable and
   * `x` is the independent variable.
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def regr_intercept(y: Column, x: Column): Column =
    withAggregateFunction { RegrIntercept(y.expr, x.expr) }

  /**
   * Aggregate function: returns the coefficient of determination for non-null pairs
   * in a group, where `y` is the dependent variable and `x` is the independent variable.
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def regr_r2(y: Column, x: Column): Column = withAggregateFunction { RegrR2(y.expr, x.expr) }

  /**
   * Aggregate function: returns the slope of the linear regression line for non-null pairs
   * in a group, where `y` is the dependent variable and `x` is the independent variable.
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def regr_slope(y: Column, x: Column): Column =
    withAggregateFunction { RegrSlope(y.expr, x.expr) }

  /**
   * Aggregate function: returns REGR_COUNT(y, x) * VAR_POP(x) for non-null pairs
   * in a group, where `y` is the dependent variable and `x` is the independent variable.
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def regr_sxx(y: Column, x: Column): Column = withAggregateFunction { RegrSXX(y.expr, x.expr) }

  /**
   * Aggregate function: returns REGR_COUNT(y, x) * COVAR_POP(y, x) for non-null pairs
   * in a group, where `y` is the dependent variable and `x` is the independent variable.
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def regr_sxy(y: Column, x: Column): Column = withAggregateFunction { RegrSXY(y.expr, x.expr) }

  /**
   * Aggregate function: returns REGR_COUNT(y, x) * VAR_POP(y) for non-null pairs
   * in a group, where `y` is the dependent variable and `x` is the independent variable.
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def regr_syy(y: Column, x: Column): Column = withAggregateFunction { RegrSYY(y.expr, x.expr) }

  /**
   * Aggregate function: returns some value of `e` for a group of rows.
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def any_value(e: Column): Column = withAggregateFunction { new AnyValue(e.expr) }

  /**
   * Aggregate function: returns some value of `e` for a group of rows.
   * If `isIgnoreNull` is true, returns only non-null values.
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def any_value(e: Column, ignoreNulls: Column): Column =
    withAggregateFunction { new AnyValue(e.expr, ignoreNulls.expr) }

  /**
   * Aggregate function: returns the number of `TRUE` values for the expression.
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def count_if(e: Column): Column = withAggregateFunction { CountIf(e.expr) }

  /**
   * Aggregate function: computes a histogram on numeric 'expr' using nb bins.
   * The return value is an array of (x,y) pairs representing the centers of the
   * histogram's bins. As the value of 'nb' is increased, the histogram approximation
   * gets finer-grained, but may yield artifacts around outliers. In practice, 20-40
   * histogram bins appear to work well, with more bins being required for skewed or
   * smaller datasets. Note that this function creates a histogram with non-uniform
   * bin widths. It offers no guarantees in terms of the mean-squared-error of the
   * histogram, but in practice is comparable to the histograms produced by the R/S-Plus
   * statistical computing packages. Note: the output type of the 'x' field in the return value is
   * propagated from the input value consumed in the aggregate function.
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def histogram_numeric(e: Column, nBins: Column): Column =
    withAggregateFunction { new HistogramNumeric(e.expr, nBins.expr) }

  /**
   * Aggregate function: returns true if all values of `e` are true.
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def every(e: Column): Column = call_function("every", e)

  /**
   * Aggregate function: returns true if all values of `e` are true.
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def bool_and(e: Column): Column = withAggregateFunction { BoolAnd(e.expr) }

  /**
   * Aggregate function: returns true if at least one value of `e` is true.
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def some(e: Column): Column = call_function("some", e)

  /**
   * Aggregate function: returns true if at least one value of `e` is true.
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def any(e: Column): Column = call_function("any", e)

  /**
   * Aggregate function: returns true if at least one value of `e` is true.
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def bool_or(e: Column): Column = withAggregateFunction { BoolOr(e.expr) }

  /**
   * Aggregate function: returns the bitwise AND of all non-null input values, or null if none.
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def bit_and(e: Column): Column = withAggregateFunction { BitAndAgg(e.expr) }

  /**
   * Aggregate function: returns the bitwise OR of all non-null input values, or null if none.
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def bit_or(e: Column): Column = withAggregateFunction { BitOrAgg(e.expr) }

  /**
   * Aggregate function: returns the bitwise XOR of all non-null input values, or null if none.
   *
   * @group agg_funcs
   * @since 3.5.0
   */
  def bit_xor(e: Column): Column = withAggregateFunction { BitXorAgg(e.expr) }

  //////////////////////////////////////////////////////////////////////////////////////////////
  // Window functions
  //////////////////////////////////////////////////////////////////////////////////////////////

  /**
   * Window function: returns the cumulative distribution of values within a window partition,
   * i.e. the fraction of rows that are below the current row.
   *
   * {{{
   *   N = total number of rows in the partition
   *   cumeDist(x) = number of values before (and including) x / N
   * }}}
   *
   * @group window_funcs
   * @since 1.6.0
   */
  def cume_dist(): Column = withExpr { new CumeDist }

  /**
   * Window function: returns the rank of rows within a window partition, without any gaps.
   *
   * The difference between rank and dense_rank is that denseRank leaves no gaps in ranking
   * sequence when there are ties. That is, if you were ranking a competition using dense_rank
   * and had three people tie for second place, you would say that all three were in second
   * place and that the next person came in third. Rank would give me sequential numbers, making
   * the person that came in third place (after the ties) would register as coming in fifth.
   *
   * This is equivalent to the DENSE_RANK function in SQL.
   *
   * @group window_funcs
   * @since 1.6.0
   */
  def dense_rank(): Column = withExpr { new DenseRank }

  /**
   * Window function: returns the value that is `offset` rows before the current row, and
   * `null` if there is less than `offset` rows before the current row. For example,
   * an `offset` of one will return the previous row at any given point in the window partition.
   *
   * This is equivalent to the LAG function in SQL.
   *
   * @group window_funcs
   * @since 1.4.0
   */
  def lag(e: Column, offset: Int): Column = lag(e, offset, null)

  /**
   * Window function: returns the value that is `offset` rows before the current row, and
   * `null` if there is less than `offset` rows before the current row. For example,
   * an `offset` of one will return the previous row at any given point in the window partition.
   *
   * This is equivalent to the LAG function in SQL.
   *
   * @group window_funcs
   * @since 1.4.0
   */
  def lag(columnName: String, offset: Int): Column = lag(columnName, offset, null)

  /**
   * Window function: returns the value that is `offset` rows before the current row, and
   * `defaultValue` if there is less than `offset` rows before the current row. For example,
   * an `offset` of one will return the previous row at any given point in the window partition.
   *
   * This is equivalent to the LAG function in SQL.
   *
   * @group window_funcs
   * @since 1.4.0
   */
  def lag(columnName: String, offset: Int, defaultValue: Any): Column = {
    lag(Column(columnName), offset, defaultValue)
  }

  /**
   * Window function: returns the value that is `offset` rows before the current row, and
   * `defaultValue` if there is less than `offset` rows before the current row. For example,
   * an `offset` of one will return the previous row at any given point in the window partition.
   *
   * This is equivalent to the LAG function in SQL.
   *
   * @group window_funcs
   * @since 1.4.0
   */
  def lag(e: Column, offset: Int, defaultValue: Any): Column = {
    lag(e, offset, defaultValue, false)
  }

  /**
   * Window function: returns the value that is `offset` rows before the current row, and
   * `defaultValue` if there is less than `offset` rows before the current row. `ignoreNulls`
   * determines whether null values of row are included in or eliminated from the calculation.
   * For example, an `offset` of one will return the previous row at any given point in the
   * window partition.
   *
   * This is equivalent to the LAG function in SQL.
   *
   * @group window_funcs
   * @since 3.2.0
   */
  def lag(e: Column, offset: Int, defaultValue: Any, ignoreNulls: Boolean): Column = withExpr {
    Lag(e.expr, Literal(offset), Literal(defaultValue), ignoreNulls)
  }

  /**
   * Window function: returns the value that is `offset` rows after the current row, and
   * `null` if there is less than `offset` rows after the current row. For example,
   * an `offset` of one will return the next row at any given point in the window partition.
   *
   * This is equivalent to the LEAD function in SQL.
   *
   * @group window_funcs
   * @since 1.4.0
   */
  def lead(columnName: String, offset: Int): Column = { lead(columnName, offset, null) }

  /**
   * Window function: returns the value that is `offset` rows after the current row, and
   * `null` if there is less than `offset` rows after the current row. For example,
   * an `offset` of one will return the next row at any given point in the window partition.
   *
   * This is equivalent to the LEAD function in SQL.
   *
   * @group window_funcs
   * @since 1.4.0
   */
  def lead(e: Column, offset: Int): Column = { lead(e, offset, null) }

  /**
   * Window function: returns the value that is `offset` rows after the current row, and
   * `defaultValue` if there is less than `offset` rows after the current row. For example,
   * an `offset` of one will return the next row at any given point in the window partition.
   *
   * This is equivalent to the LEAD function in SQL.
   *
   * @group window_funcs
   * @since 1.4.0
   */
  def lead(columnName: String, offset: Int, defaultValue: Any): Column = {
    lead(Column(columnName), offset, defaultValue)
  }

  /**
   * Window function: returns the value that is `offset` rows after the current row, and
   * `defaultValue` if there is less than `offset` rows after the current row. For example,
   * an `offset` of one will return the next row at any given point in the window partition.
   *
   * This is equivalent to the LEAD function in SQL.
   *
   * @group window_funcs
   * @since 1.4.0
   */
  def lead(e: Column, offset: Int, defaultValue: Any): Column = {
    lead(e, offset, defaultValue, false)
  }

  /**
   * Window function: returns the value that is `offset` rows after the current row, and
   * `defaultValue` if there is less than `offset` rows after the current row. `ignoreNulls`
   * determines whether null values of row are included in or eliminated from the calculation.
   * The default value of `ignoreNulls` is false. For example, an `offset` of one will return
   * the next row at any given point in the window partition.
   *
   * This is equivalent to the LEAD function in SQL.
   *
   * @group window_funcs
   * @since 3.2.0
   */
  def lead(e: Column, offset: Int, defaultValue: Any, ignoreNulls: Boolean): Column = withExpr {
    Lead(e.expr, Literal(offset), Literal(defaultValue), ignoreNulls)
  }

  /**
   * Window function: returns the value that is the `offset`th row of the window frame
   * (counting from 1), and `null` if the size of window frame is less than `offset` rows.
   *
   * It will return the `offset`th non-null value it sees when ignoreNulls is set to true.
   * If all values are null, then null is returned.
   *
   * This is equivalent to the nth_value function in SQL.
   *
   * @group window_funcs
   * @since 3.1.0
   */
  def nth_value(e: Column, offset: Int, ignoreNulls: Boolean): Column = withExpr {
    NthValue(e.expr, Literal(offset), ignoreNulls)
  }

  /**
   * Window function: returns the value that is the `offset`th row of the window frame
   * (counting from 1), and `null` if the size of window frame is less than `offset` rows.
   *
   * This is equivalent to the nth_value function in SQL.
   *
   * @group window_funcs
   * @since 3.1.0
   */
  def nth_value(e: Column, offset: Int): Column = withExpr {
    NthValue(e.expr, Literal(offset), false)
  }

  /**
   * Window function: returns the ntile group id (from 1 to `n` inclusive) in an ordered window
   * partition. For example, if `n` is 4, the first quarter of the rows will get value 1, the second
   * quarter will get 2, the third quarter will get 3, and the last quarter will get 4.
   *
   * This is equivalent to the NTILE function in SQL.
   *
   * @group window_funcs
   * @since 1.4.0
   */
  def ntile(n: Int): Column = withExpr { new NTile(Literal(n)) }

  /**
   * Window function: returns the relative rank (i.e. percentile) of rows within a window partition.
   *
   * This is computed by:
   * {{{
   *   (rank of row in its partition - 1) / (number of rows in the partition - 1)
   * }}}
   *
   * This is equivalent to the PERCENT_RANK function in SQL.
   *
   * @group window_funcs
   * @since 1.6.0
   */
  def percent_rank(): Column = withExpr { new PercentRank }

  /**
   * Window function: returns the rank of rows within a window partition.
   *
   * The difference between rank and dense_rank is that dense_rank leaves no gaps in ranking
   * sequence when there are ties. That is, if you were ranking a competition using dense_rank
   * and had three people tie for second place, you would say that all three were in second
   * place and that the next person came in third. Rank would give me sequential numbers, making
   * the person that came in third place (after the ties) would register as coming in fifth.
   *
   * This is equivalent to the RANK function in SQL.
   *
   * @group window_funcs
   * @since 1.4.0
   */
  def rank(): Column = withExpr { new Rank }

  /**
   * Window function: returns a sequential number starting at 1 within a window partition.
   *
   * @group window_funcs
   * @since 1.6.0
   */
  def row_number(): Column = withExpr { RowNumber() }

  //////////////////////////////////////////////////////////////////////////////////////////////
  // Non-aggregate functions
  //////////////////////////////////////////////////////////////////////////////////////////////

  /**
   * Creates a new array column. The input columns must all have the same data type.
   *
   * @group normal_funcs
   * @since 1.4.0
   */
  @scala.annotation.varargs
  def array(cols: Column*): Column = withExpr { CreateArray(cols.map(_.expr)) }

  /**
   * Creates a new array column. The input columns must all have the same data type.
   *
   * @group normal_funcs
   * @since 1.4.0
   */
  @scala.annotation.varargs
  def array(colName: String, colNames: String*): Column = {
    array((colName +: colNames).map(col) : _*)
  }

  /**
   * Creates a new map column. The input columns must be grouped as key-value pairs, e.g.
   * (key1, value1, key2, value2, ...). The key columns must all have the same data type, and can't
   * be null. The value columns must all have the same data type.
   *
   * @group normal_funcs
   * @since 2.0
   */
  @scala.annotation.varargs
  def map(cols: Column*): Column = withExpr { CreateMap(cols.map(_.expr)) }

  /**
   * Creates a struct with the given field names and values.
   *
   * @group normal_funcs
   * @since 3.5.0
   */
  def named_struct(cols: Column*): Column = withExpr { CreateNamedStruct(cols.map(_.expr)) }

  /**
   * Creates a new map column. The array in the first column is used for keys. The array in the
   * second column is used for values. All elements in the array for key should not be null.
   *
   * @group normal_funcs
   * @since 2.4
   */
  def map_from_arrays(keys: Column, values: Column): Column = withExpr {
    MapFromArrays(keys.expr, values.expr)
  }

  /**
   * Creates a map after splitting the text into key/value pairs using delimiters.
   * Both `pairDelim` and `keyValueDelim` are treated as regular expressions.
   *
   * @group map_funcs
   * @since 3.5.0
   */
  def str_to_map(text: Column, pairDelim: Column, keyValueDelim: Column): Column = withExpr {
    StringToMap(text.expr, pairDelim.expr, keyValueDelim.expr)
  }

  /**
   * Creates a map after splitting the text into key/value pairs using delimiters.
   * The `pairDelim` is treated as regular expressions.
   *
   * @group map_funcs
   * @since 3.5.0
   */
  def str_to_map(text: Column, pairDelim: Column): Column = withExpr {
    new StringToMap(text.expr, pairDelim.expr)
  }

  /**
   * Creates a map after splitting the text into key/value pairs using delimiters.
   *
   * @group map_funcs
   * @since 3.5.0
   */
  def str_to_map(text: Column): Column = withExpr {
    new StringToMap(text.expr)
  }

  /**
   * Marks a DataFrame as small enough for use in broadcast joins.
   *
   * The following example marks the right DataFrame for broadcast hash join using `joinKey`.
   * {{{
   *   // left and right are DataFrames
   *   left.join(broadcast(right), "joinKey")
   * }}}
   *
   * @group normal_funcs
   * @since 1.5.0
   */
  def broadcast[T](df: Dataset[T]): Dataset[T] = {
    Dataset[T](df.sparkSession,
      ResolvedHint(df.logicalPlan, HintInfo(strategy = Some(BROADCAST))))(df.exprEnc)
  }

  /**
   * Returns the first column that is not null, or null if all inputs are null.
   *
   * For example, `coalesce(a, b, c)` will return a if a is not null,
   * or b if a is null and b is not null, or c if both a and b are null but c is not null.
   *
   * @group normal_funcs
   * @since 1.3.0
   */
  @scala.annotation.varargs
  def coalesce(e: Column*): Column = withExpr { Coalesce(e.map(_.expr)) }

  /**
   * Creates a string column for the file name of the current Spark task.
   *
   * @group normal_funcs
   * @since 1.6.0
   */
  def input_file_name(): Column = withExpr { InputFileName() }

  /**
   * Return true iff the column is NaN.
   *
   * @group normal_funcs
   * @since 1.6.0
   */
  def isnan(e: Column): Column = withExpr { IsNaN(e.expr) }

  /**
   * Return true iff the column is null.
   *
   * @group normal_funcs
   * @since 1.6.0
   */
  def isnull(e: Column): Column = withExpr { IsNull(e.expr) }

  /**
   * A column expression that generates monotonically increasing 64-bit integers.
   *
   * The generated ID is guaranteed to be monotonically increasing and unique, but not consecutive.
   * The current implementation puts the partition ID in the upper 31 bits, and the record number
   * within each partition in the lower 33 bits. The assumption is that the data frame has
   * less than 1 billion partitions, and each partition has less than 8 billion records.
   *
   * As an example, consider a `DataFrame` with two partitions, each with 3 records.
   * This expression would return the following IDs:
   *
   * {{{
   * 0, 1, 2, 8589934592 (1L << 33), 8589934593, 8589934594.
   * }}}
   *
   * @group normal_funcs
   * @since 1.4.0
   */
  @deprecated("Use monotonically_increasing_id()", "2.0.0")
  def monotonicallyIncreasingId(): Column = monotonically_increasing_id()

  /**
   * A column expression that generates monotonically increasing 64-bit integers.
   *
   * The generated ID is guaranteed to be monotonically increasing and unique, but not consecutive.
   * The current implementation puts the partition ID in the upper 31 bits, and the record number
   * within each partition in the lower 33 bits. The assumption is that the data frame has
   * less than 1 billion partitions, and each partition has less than 8 billion records.
   *
   * As an example, consider a `DataFrame` with two partitions, each with 3 records.
   * This expression would return the following IDs:
   *
   * {{{
   * 0, 1, 2, 8589934592 (1L << 33), 8589934593, 8589934594.
   * }}}
   *
   * @group normal_funcs
   * @since 1.6.0
   */
  def monotonically_increasing_id(): Column = withExpr { MonotonicallyIncreasingID() }

  /**
   * Returns col1 if it is not NaN, or col2 if col1 is NaN.
   *
   * Both inputs should be floating point columns (DoubleType or FloatType).
   *
   * @group normal_funcs
   * @since 1.5.0
   */
  def nanvl(col1: Column, col2: Column): Column = withExpr { NaNvl(col1.expr, col2.expr) }

  /**
   * Unary minus, i.e. negate the expression.
   * {{{
   *   // Select the amount column and negates all values.
   *   // Scala:
   *   df.select( -df("amount") )
   *
   *   // Java:
   *   df.select( negate(df.col("amount")) );
   * }}}
   *
   * @group normal_funcs
   * @since 1.3.0
   */
  def negate(e: Column): Column = -e

  /**
   * Inversion of boolean expression, i.e. NOT.
   * {{{
   *   // Scala: select rows that are not active (isActive === false)
   *   df.filter( !df("isActive") )
   *
   *   // Java:
   *   df.filter( not(df.col("isActive")) );
   * }}}
   *
   * @group normal_funcs
   * @since 1.3.0
   */
  def not(e: Column): Column = !e

  /**
   * Generate a random column with independent and identically distributed (i.i.d.) samples
   * uniformly distributed in [0.0, 1.0).
   *
   * @note The function is non-deterministic in general case.
   *
   * @group normal_funcs
   * @since 1.4.0
   */
  def rand(seed: Long): Column = withExpr { Rand(seed) }

  /**
   * Generate a random column with independent and identically distributed (i.i.d.) samples
   * uniformly distributed in [0.0, 1.0).
   *
   * @note The function is non-deterministic in general case.
   *
   * @group normal_funcs
   * @since 1.4.0
   */
  def rand(): Column = rand(Utils.random.nextLong)

  /**
   * Generate a column with independent and identically distributed (i.i.d.) samples from
   * the standard normal distribution.
   *
   * @note The function is non-deterministic in general case.
   *
   * @group normal_funcs
   * @since 1.4.0
   */
  def randn(seed: Long): Column = withExpr { Randn(seed) }

  /**
   * Generate a column with independent and identically distributed (i.i.d.) samples from
   * the standard normal distribution.
   *
   * @note The function is non-deterministic in general case.
   *
   * @group normal_funcs
   * @since 1.4.0
   */
  def randn(): Column = randn(Utils.random.nextLong)

  /**
   * Partition ID.
   *
   * @note This is non-deterministic because it depends on data partitioning and task scheduling.
   *
   * @group normal_funcs
   * @since 1.6.0
   */
  def spark_partition_id(): Column = withExpr { SparkPartitionID() }

  /**
   * Computes the square root of the specified float value.
   *
   * @group math_funcs
   * @since 1.3.0
   */
  def sqrt(e: Column): Column = withExpr { Sqrt(e.expr) }

  /**
   * Computes the square root of the specified float value.
   *
   * @group math_funcs
   * @since 1.5.0
   */
  def sqrt(colName: String): Column = sqrt(Column(colName))

  /**
   * Returns the sum of `left` and `right` and the result is null on overflow. The acceptable
   * input types are the same with the `+` operator.
   *
   * @group math_funcs
   * @since 3.5.0
   */
  def try_add(left: Column, right: Column): Column = call_function("try_add", left, right)

  /**
   * Returns the mean calculated from values of a group and the result is null on overflow.
   *
   * @group math_funcs
   * @since 3.5.0
   */
  def try_avg(e: Column): Column =
    call_function("try_avg", e)

  /**
   * Returns `dividend``/``divisor`. It always performs floating point division. Its result is
   * always null if `divisor` is 0.
   *
   * @group math_funcs
   * @since 3.5.0
   */
  def try_divide(dividend: Column, divisor: Column): Column =
    call_function("try_divide", dividend, divisor)

  /**
   * Returns `left``*``right` and the result is null on overflow. The acceptable input types are
   * the same with the `*` operator.
   *
   * @group math_funcs
   * @since 3.5.0
   */
  def try_multiply(left: Column, right: Column): Column =
    call_function("try_multiply", left, right)

  /**
   * Returns `left``-``right` and the result is null on overflow. The acceptable input types are
   * the same with the `-` operator.
   *
   * @group math_funcs
   * @since 3.5.0
   */
  def try_subtract(left: Column, right: Column): Column =
    call_function("try_subtract", left, right)

  /**
   * Returns the sum calculated from values of a group and the result is null on overflow.
   *
   * @group math_funcs
   * @since 3.5.0
   */
  def try_sum(e: Column): Column = call_function("try_sum", e)

  /**
   * Creates a new struct column.
   * If the input column is a column in a `DataFrame`, or a derived column expression
   * that is named (i.e. aliased), its name would be retained as the StructField's name,
   * otherwise, the newly generated StructField's name would be auto generated as
   * `col` with a suffix `index + 1`, i.e. col1, col2, col3, ...
   *
   * @group normal_funcs
   * @since 1.4.0
   */
  @scala.annotation.varargs
  def struct(cols: Column*): Column = withExpr { CreateStruct.create(cols.map(_.expr)) }

  /**
   * Creates a new struct column that composes multiple input columns.
   *
   * @group normal_funcs
   * @since 1.4.0
   */
  @scala.annotation.varargs
  def struct(colName: String, colNames: String*): Column = {
    struct((colName +: colNames).map(col) : _*)
  }

  /**
   * Evaluates a list of conditions and returns one of multiple possible result expressions.
   * If otherwise is not defined at the end, null is returned for unmatched conditions.
   *
   * {{{
   *   // Example: encoding gender string column into integer.
   *
   *   // Scala:
   *   people.select(when(people("gender") === "male", 0)
   *     .when(people("gender") === "female", 1)
   *     .otherwise(2))
   *
   *   // Java:
   *   people.select(when(col("gender").equalTo("male"), 0)
   *     .when(col("gender").equalTo("female"), 1)
   *     .otherwise(2))
   * }}}
   *
   * @group normal_funcs
   * @since 1.4.0
   */
  def when(condition: Column, value: Any): Column = withExpr {
    CaseWhen(Seq((condition.expr, lit(value).expr)))
  }

  /**
   * Computes bitwise NOT (~) of a number.
   *
   * @group normal_funcs
   * @since 1.4.0
   */
  @deprecated("Use bitwise_not", "3.2.0")
  def bitwiseNOT(e: Column): Column = bitwise_not(e)

  /**
   * Computes bitwise NOT (~) of a number.
   *
   * @group normal_funcs
   * @since 3.2.0
   */
  def bitwise_not(e: Column): Column = withExpr { BitwiseNot(e.expr) }

  /**
   * Returns the number of bits that are set in the argument expr as an unsigned 64-bit integer,
   * or NULL if the argument is NULL.
   *
   * @group bitwise_funcs
   * @since 3.5.0
   */
  def bit_count(e: Column): Column = withExpr { BitwiseCount(e.expr) }

  /**
   * Returns the value of the bit (0 or 1) at the specified position.
   * The positions are numbered from right to left, starting at zero.
   * The position argument cannot be negative.
   *
   * @group bitwise_funcs
   * @since 3.5.0
   */
  def bit_get(e: Column, pos: Column): Column = withExpr { BitwiseGet(e.expr, pos.expr) }

  /**
   * Returns the value of the bit (0 or 1) at the specified position.
   * The positions are numbered from right to left, starting at zero.
   * The position argument cannot be negative.
   *
   * @group bitwise_funcs
   * @since 3.5.0
   */
  def getbit(e: Column, pos: Column): Column = call_function("getbit", e, pos)

  /**
   * Parses the expression string into the column that it represents, similar to
   * [[Dataset#selectExpr]].
   * {{{
   *   // get the number of words of each length
   *   df.groupBy(expr("length(word)")).count()
   * }}}
   *
   * @group normal_funcs
   */
  def expr(expr: String): Column = {
    val parser = SparkSession.getActiveSession.map(_.sessionState.sqlParser).getOrElse {
      new SparkSqlParser()
    }
    Column(parser.parseExpression(expr))
  }

  //////////////////////////////////////////////////////////////////////////////////////////////
  // Math Functions
  //////////////////////////////////////////////////////////////////////////////////////////////

  /**
   * Computes the absolute value of a numeric value.
   *
   * @group math_funcs
   * @since 1.3.0
   */
  def abs(e: Column): Column = withExpr { Abs(e.expr) }

  /**
   * @return inverse cosine of `e` in radians, as if computed by `java.lang.Math.acos`
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def acos(e: Column): Column = withExpr { Acos(e.expr) }

  /**
   * @return inverse cosine of `columnName`, as if computed by `java.lang.Math.acos`
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def acos(columnName: String): Column = acos(Column(columnName))

  /**
   * @return inverse hyperbolic cosine of `e`
   *
   * @group math_funcs
   * @since 3.1.0
   */
  def acosh(e: Column): Column = withExpr { Acosh(e.expr) }

  /**
   * @return inverse hyperbolic cosine of `columnName`
   *
   * @group math_funcs
   * @since 3.1.0
   */
  def acosh(columnName: String): Column = acosh(Column(columnName))

  /**
   * @return inverse sine of `e` in radians, as if computed by `java.lang.Math.asin`
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def asin(e: Column): Column = withExpr { Asin(e.expr) }

  /**
   * @return inverse sine of `columnName`, as if computed by `java.lang.Math.asin`
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def asin(columnName: String): Column = asin(Column(columnName))

  /**
   * @return inverse hyperbolic sine of `e`
   *
   * @group math_funcs
   * @since 3.1.0
   */
  def asinh(e: Column): Column = withExpr { Asinh(e.expr) }

  /**
   * @return inverse hyperbolic sine of `columnName`
   *
   * @group math_funcs
   * @since 3.1.0
   */
  def asinh(columnName: String): Column = asinh(Column(columnName))

  /**
   * @return inverse tangent of `e` as if computed by `java.lang.Math.atan`
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def atan(e: Column): Column = withExpr { Atan(e.expr) }

  /**
   * @return inverse tangent of `columnName`, as if computed by `java.lang.Math.atan`
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def atan(columnName: String): Column = atan(Column(columnName))

  /**
   * @param y coordinate on y-axis
   * @param x coordinate on x-axis
   * @return the theta component of the point
   *         (r, theta)
   *         in polar coordinates that corresponds to the point
   *         (x, y) in Cartesian coordinates,
   *         as if computed by `java.lang.Math.atan2`
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def atan2(y: Column, x: Column): Column = withExpr { Atan2(y.expr, x.expr) }

  /**
   * @param y coordinate on y-axis
   * @param xName coordinate on x-axis
   * @return the theta component of the point
   *         (r, theta)
   *         in polar coordinates that corresponds to the point
   *         (x, y) in Cartesian coordinates,
   *         as if computed by `java.lang.Math.atan2`
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def atan2(y: Column, xName: String): Column = atan2(y, Column(xName))

  /**
   * @param yName coordinate on y-axis
   * @param x coordinate on x-axis
   * @return the theta component of the point
   *         (r, theta)
   *         in polar coordinates that corresponds to the point
   *         (x, y) in Cartesian coordinates,
   *         as if computed by `java.lang.Math.atan2`
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def atan2(yName: String, x: Column): Column = atan2(Column(yName), x)

  /**
   * @param yName coordinate on y-axis
   * @param xName coordinate on x-axis
   * @return the theta component of the point
   *         (r, theta)
   *         in polar coordinates that corresponds to the point
   *         (x, y) in Cartesian coordinates,
   *         as if computed by `java.lang.Math.atan2`
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def atan2(yName: String, xName: String): Column =
    atan2(Column(yName), Column(xName))

  /**
   * @param y coordinate on y-axis
   * @param xValue coordinate on x-axis
   * @return the theta component of the point
   *         (r, theta)
   *         in polar coordinates that corresponds to the point
   *         (x, y) in Cartesian coordinates,
   *         as if computed by `java.lang.Math.atan2`
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def atan2(y: Column, xValue: Double): Column = atan2(y, lit(xValue))

  /**
   * @param yName coordinate on y-axis
   * @param xValue coordinate on x-axis
   * @return the theta component of the point
   *         (r, theta)
   *         in polar coordinates that corresponds to the point
   *         (x, y) in Cartesian coordinates,
   *         as if computed by `java.lang.Math.atan2`
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def atan2(yName: String, xValue: Double): Column = atan2(Column(yName), xValue)

  /**
   * @param yValue coordinate on y-axis
   * @param x coordinate on x-axis
   * @return the theta component of the point
   *         (r, theta)
   *         in polar coordinates that corresponds to the point
   *         (x, y) in Cartesian coordinates,
   *         as if computed by `java.lang.Math.atan2`
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def atan2(yValue: Double, x: Column): Column = atan2(lit(yValue), x)

  /**
   * @param yValue coordinate on y-axis
   * @param xName coordinate on x-axis
   * @return the theta component of the point
   *         (r, theta)
   *         in polar coordinates that corresponds to the point
   *         (x, y) in Cartesian coordinates,
   *         as if computed by `java.lang.Math.atan2`
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def atan2(yValue: Double, xName: String): Column = atan2(yValue, Column(xName))

  /**
   * @return inverse hyperbolic tangent of `e`
   *
   * @group math_funcs
   * @since 3.1.0
   */
  def atanh(e: Column): Column = withExpr { Atanh(e.expr) }

  /**
   * @return inverse hyperbolic tangent of `columnName`
   *
   * @group math_funcs
   * @since 3.1.0
   */
  def atanh(columnName: String): Column = atanh(Column(columnName))

  /**
   * An expression that returns the string representation of the binary value of the given long
   * column. For example, bin("12") returns "1100".
   *
   * @group math_funcs
   * @since 1.5.0
   */
  def bin(e: Column): Column = withExpr { Bin(e.expr) }

  /**
   * An expression that returns the string representation of the binary value of the given long
   * column. For example, bin("12") returns "1100".
   *
   * @group math_funcs
   * @since 1.5.0
   */
  def bin(columnName: String): Column = bin(Column(columnName))

  /**
   * Computes the cube-root of the given value.
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def cbrt(e: Column): Column = withExpr { Cbrt(e.expr) }

  /**
   * Computes the cube-root of the given column.
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def cbrt(columnName: String): Column = cbrt(Column(columnName))

  /**
   * Computes the ceiling of the given value of `e` to `scale` decimal places.
   *
   * @group math_funcs
   * @since 3.3.0
   */
  def ceil(e: Column, scale: Column): Column = call_function("ceil", e, scale)

  /**
   * Computes the ceiling of the given value of `e` to 0 decimal places.
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def ceil(e: Column): Column = call_function("ceil", e)

  /**
   * Computes the ceiling of the given value of `e` to 0 decimal places.
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def ceil(columnName: String): Column = ceil(Column(columnName))

  /**
   * Computes the ceiling of the given value of `e` to `scale` decimal places.
   *
   * @group math_funcs
   * @since 3.5.0
   */
  def ceiling(e: Column, scale: Column): Column =
    call_function("ceiling", e, scale)

  /**
   * Computes the ceiling of the given value of `e` to 0 decimal places.
   *
   * @group math_funcs
   * @since 3.5.0
   */
  def ceiling(e: Column): Column = call_function("ceiling", e)

  /**
   * Convert a number in a string column from one base to another.
   *
   * @group math_funcs
   * @since 1.5.0
   */
  def conv(num: Column, fromBase: Int, toBase: Int): Column = withExpr {
    Conv(num.expr, lit(fromBase).expr, lit(toBase).expr)
  }

  /**
   * @param e angle in radians
   * @return cosine of the angle, as if computed by `java.lang.Math.cos`
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def cos(e: Column): Column = withExpr { Cos(e.expr) }

  /**
   * @param columnName angle in radians
   * @return cosine of the angle, as if computed by `java.lang.Math.cos`
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def cos(columnName: String): Column = cos(Column(columnName))

  /**
   * @param e hyperbolic angle
   * @return hyperbolic cosine of the angle, as if computed by `java.lang.Math.cosh`
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def cosh(e: Column): Column = withExpr { Cosh(e.expr) }

  /**
   * @param columnName hyperbolic angle
   * @return hyperbolic cosine of the angle, as if computed by `java.lang.Math.cosh`
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def cosh(columnName: String): Column = cosh(Column(columnName))

  /**
   * @param e angle in radians
   * @return cotangent of the angle
   *
   * @group math_funcs
   * @since 3.3.0
   */
  def cot(e: Column): Column = withExpr { Cot(e.expr) }

  /**
   * @param e angle in radians
   * @return cosecant of the angle
   *
   * @group math_funcs
   * @since 3.3.0
   */
  def csc(e: Column): Column = withExpr { Csc(e.expr) }

  /**
   * Returns Euler's number.
   *
   * @group math_funcs
   * @since 3.5.0
   */
  def e(): Column = withExpr { EulerNumber() }

  /**
   * Computes the exponential of the given value.
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def exp(e: Column): Column = withExpr { Exp(e.expr) }

  /**
   * Computes the exponential of the given column.
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def exp(columnName: String): Column = exp(Column(columnName))

  /**
   * Computes the exponential of the given value minus one.
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def expm1(e: Column): Column = withExpr { Expm1(e.expr) }

  /**
   * Computes the exponential of the given column minus one.
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def expm1(columnName: String): Column = expm1(Column(columnName))

  /**
   * Computes the factorial of the given value.
   *
   * @group math_funcs
   * @since 1.5.0
   */
  def factorial(e: Column): Column = withExpr { Factorial(e.expr) }

  /**
   * Computes the floor of the given value of `e` to `scale` decimal places.
   *
   * @group math_funcs
   * @since 3.3.0
   */
  def floor(e: Column, scale: Column): Column = call_function("floor", e, scale)

  /**
   * Computes the floor of the given value of `e` to 0 decimal places.
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def floor(e: Column): Column = call_function("floor", e)

  /**
   * Computes the floor of the given column value to 0 decimal places.
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def floor(columnName: String): Column = floor(Column(columnName))

  /**
   * Returns the greatest value of the list of values, skipping null values.
   * This function takes at least 2 parameters. It will return null iff all parameters are null.
   *
   * @group normal_funcs
   * @since 1.5.0
   */
  @scala.annotation.varargs
  def greatest(exprs: Column*): Column = withExpr { Greatest(exprs.map(_.expr)) }

  /**
   * Returns the greatest value of the list of column names, skipping null values.
   * This function takes at least 2 parameters. It will return null iff all parameters are null.
   *
   * @group normal_funcs
   * @since 1.5.0
   */
  @scala.annotation.varargs
  def greatest(columnName: String, columnNames: String*): Column = {
    greatest((columnName +: columnNames).map(Column.apply): _*)
  }

  /**
   * Computes hex value of the given column.
   *
   * @group math_funcs
   * @since 1.5.0
   */
  def hex(column: Column): Column = withExpr { Hex(column.expr) }

  /**
   * Inverse of hex. Interprets each pair of characters as a hexadecimal number
   * and converts to the byte representation of number.
   *
   * @group math_funcs
   * @since 1.5.0
   */
  def unhex(column: Column): Column = withExpr { Unhex(column.expr) }

  /**
   * Computes `sqrt(a^2^ + b^2^)` without intermediate overflow or underflow.
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def hypot(l: Column, r: Column): Column = withExpr { Hypot(l.expr, r.expr) }

  /**
   * Computes `sqrt(a^2^ + b^2^)` without intermediate overflow or underflow.
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def hypot(l: Column, rightName: String): Column = hypot(l, Column(rightName))

  /**
   * Computes `sqrt(a^2^ + b^2^)` without intermediate overflow or underflow.
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def hypot(leftName: String, r: Column): Column = hypot(Column(leftName), r)

  /**
   * Computes `sqrt(a^2^ + b^2^)` without intermediate overflow or underflow.
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def hypot(leftName: String, rightName: String): Column =
    hypot(Column(leftName), Column(rightName))

  /**
   * Computes `sqrt(a^2^ + b^2^)` without intermediate overflow or underflow.
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def hypot(l: Column, r: Double): Column = hypot(l, lit(r))

  /**
   * Computes `sqrt(a^2^ + b^2^)` without intermediate overflow or underflow.
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def hypot(leftName: String, r: Double): Column = hypot(Column(leftName), r)

  /**
   * Computes `sqrt(a^2^ + b^2^)` without intermediate overflow or underflow.
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def hypot(l: Double, r: Column): Column = hypot(lit(l), r)

  /**
   * Computes `sqrt(a^2^ + b^2^)` without intermediate overflow or underflow.
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def hypot(l: Double, rightName: String): Column = hypot(l, Column(rightName))

  /**
   * Returns the least value of the list of values, skipping null values.
   * This function takes at least 2 parameters. It will return null iff all parameters are null.
   *
   * @group normal_funcs
   * @since 1.5.0
   */
  @scala.annotation.varargs
  def least(exprs: Column*): Column = withExpr { Least(exprs.map(_.expr)) }

  /**
   * Returns the least value of the list of column names, skipping null values.
   * This function takes at least 2 parameters. It will return null iff all parameters are null.
   *
   * @group normal_funcs
   * @since 1.5.0
   */
  @scala.annotation.varargs
  def least(columnName: String, columnNames: String*): Column = {
    least((columnName +: columnNames).map(Column.apply): _*)
  }

  /**
   * Computes the natural logarithm of the given value.
   *
   * @group math_funcs
   * @since 3.5.0
   */
  def ln(e: Column): Column = log(e)

  /**
   * Computes the natural logarithm of the given value.
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def log(e: Column): Column = withExpr { Log(e.expr) }

  /**
   * Computes the natural logarithm of the given column.
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def log(columnName: String): Column = log(Column(columnName))

  /**
   * Returns the first argument-base logarithm of the second argument.
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def log(base: Double, a: Column): Column = withExpr { Logarithm(lit(base).expr, a.expr) }

  /**
   * Returns the first argument-base logarithm of the second argument.
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def log(base: Double, columnName: String): Column = log(base, Column(columnName))

  /**
   * Computes the logarithm of the given value in base 10.
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def log10(e: Column): Column = withExpr { Log10(e.expr) }

  /**
   * Computes the logarithm of the given value in base 10.
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def log10(columnName: String): Column = log10(Column(columnName))

  /**
   * Computes the natural logarithm of the given value plus one.
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def log1p(e: Column): Column = withExpr { Log1p(e.expr) }

  /**
   * Computes the natural logarithm of the given column plus one.
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def log1p(columnName: String): Column = log1p(Column(columnName))

  /**
   * Computes the logarithm of the given column in base 2.
   *
   * @group math_funcs
   * @since 1.5.0
   */
  def log2(expr: Column): Column = withExpr { Log2(expr.expr) }

  /**
   * Computes the logarithm of the given value in base 2.
   *
   * @group math_funcs
   * @since 1.5.0
   */
  def log2(columnName: String): Column = log2(Column(columnName))

  /**
   * Returns the negated value.
   *
   * @group math_funcs
   * @since 3.5.0
   */
  def negative(e: Column): Column = call_function("negative", e)

  /**
   * Returns Pi.
   *
   * @group math_funcs
   * @since 3.5.0
   */
  def pi(): Column = withExpr { Pi() }

  /**
   * Returns the value.
   *
   * @group math_funcs
   * @since 3.5.0
   */
  def positive(e: Column): Column = withExpr { UnaryPositive(e.expr) }

  /**
   * Returns the value of the first argument raised to the power of the second argument.
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def pow(l: Column, r: Column): Column = withExpr { Pow(l.expr, r.expr) }

  /**
   * Returns the value of the first argument raised to the power of the second argument.
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def pow(l: Column, rightName: String): Column = pow(l, Column(rightName))

  /**
   * Returns the value of the first argument raised to the power of the second argument.
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def pow(leftName: String, r: Column): Column = pow(Column(leftName), r)

  /**
   * Returns the value of the first argument raised to the power of the second argument.
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def pow(leftName: String, rightName: String): Column = pow(Column(leftName), Column(rightName))

  /**
   * Returns the value of the first argument raised to the power of the second argument.
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def pow(l: Column, r: Double): Column = pow(l, lit(r))

  /**
   * Returns the value of the first argument raised to the power of the second argument.
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def pow(leftName: String, r: Double): Column = pow(Column(leftName), r)

  /**
   * Returns the value of the first argument raised to the power of the second argument.
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def pow(l: Double, r: Column): Column = pow(lit(l), r)

  /**
   * Returns the value of the first argument raised to the power of the second argument.
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def pow(l: Double, rightName: String): Column = pow(l, Column(rightName))

  /**
   * Returns the value of the first argument raised to the power of the second argument.
   *
   * @group math_funcs
   * @since 3.5.0
   */
  def power(l: Column, r: Column): Column = pow(l, r)

  /**
   * Returns the positive value of dividend mod divisor.
   *
   * @group math_funcs
   * @since 1.5.0
   */
  def pmod(dividend: Column, divisor: Column): Column = withExpr {
    Pmod(dividend.expr, divisor.expr)
  }

  /**
   * Returns the double value that is closest in value to the argument and
   * is equal to a mathematical integer.
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def rint(e: Column): Column = withExpr { Rint(e.expr) }

  /**
   * Returns the double value that is closest in value to the argument and
   * is equal to a mathematical integer.
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def rint(columnName: String): Column = rint(Column(columnName))

  /**
   * Returns the value of the column `e` rounded to 0 decimal places with HALF_UP round mode.
   *
   * @group math_funcs
   * @since 1.5.0
   */
  def round(e: Column): Column = round(e, 0)

  /**
   * Round the value of `e` to `scale` decimal places with HALF_UP round mode
   * if `scale` is greater than or equal to 0 or at integral part when `scale` is less than 0.
   *
   * @group math_funcs
   * @since 1.5.0
   */
  def round(e: Column, scale: Int): Column = withExpr { Round(e.expr, Literal(scale)) }

  /**
   * Returns the value of the column `e` rounded to 0 decimal places with HALF_EVEN round mode.
   *
   * @group math_funcs
   * @since 2.0.0
   */
  def bround(e: Column): Column = bround(e, 0)

  /**
   * Round the value of `e` to `scale` decimal places with HALF_EVEN round mode
   * if `scale` is greater than or equal to 0 or at integral part when `scale` is less than 0.
   *
   * @group math_funcs
   * @since 2.0.0
   */
  def bround(e: Column, scale: Int): Column = withExpr { BRound(e.expr, Literal(scale)) }

  /**
   * @param e angle in radians
   * @return secant of the angle
   *
   * @group math_funcs
   * @since 3.3.0
   */
  def sec(e: Column): Column = withExpr { Sec(e.expr) }

  /**
   * Shift the given value numBits left. If the given value is a long value, this function
   * will return a long value else it will return an integer value.
   *
   * @group math_funcs
   * @since 1.5.0
   */
  @deprecated("Use shiftleft", "3.2.0")
  def shiftLeft(e: Column, numBits: Int): Column = shiftleft(e, numBits)

  /**
   * Shift the given value numBits left. If the given value is a long value, this function
   * will return a long value else it will return an integer value.
   *
   * @group math_funcs
   * @since 3.2.0
   */
  def shiftleft(e: Column, numBits: Int): Column = withExpr { ShiftLeft(e.expr, lit(numBits).expr) }

  /**
   * (Signed) shift the given value numBits right. If the given value is a long value, it will
   * return a long value else it will return an integer value.
   *
   * @group math_funcs
   * @since 1.5.0
   */
  @deprecated("Use shiftright", "3.2.0")
  def shiftRight(e: Column, numBits: Int): Column = shiftright(e, numBits)

  /**
   * (Signed) shift the given value numBits right. If the given value is a long value, it will
   * return a long value else it will return an integer value.
   *
   * @group math_funcs
   * @since 3.2.0
   */
  def shiftright(e: Column, numBits: Int): Column = withExpr {
    ShiftRight(e.expr, lit(numBits).expr)
  }

  /**
   * Unsigned shift the given value numBits right. If the given value is a long value,
   * it will return a long value else it will return an integer value.
   *
   * @group math_funcs
   * @since 1.5.0
   */
  @deprecated("Use shiftrightunsigned", "3.2.0")
  def shiftRightUnsigned(e: Column, numBits: Int): Column = shiftrightunsigned(e, numBits)

  /**
   * Unsigned shift the given value numBits right. If the given value is a long value,
   * it will return a long value else it will return an integer value.
   *
   * @group math_funcs
   * @since 3.2.0
   */
  def shiftrightunsigned(e: Column, numBits: Int): Column = withExpr {
    ShiftRightUnsigned(e.expr, lit(numBits).expr)
  }

  /**
   * Computes the signum of the given value.
   *
   * @group math_funcs
   * @since 3.5.0
   */
  def sign(e: Column): Column = call_function("sign", e)

  /**
   * Computes the signum of the given value.
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def signum(e: Column): Column = withExpr { Signum(e.expr) }

  /**
   * Computes the signum of the given column.
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def signum(columnName: String): Column = signum(Column(columnName))

  /**
   * @param e angle in radians
   * @return sine of the angle, as if computed by `java.lang.Math.sin`
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def sin(e: Column): Column = withExpr { Sin(e.expr) }

  /**
   * @param columnName angle in radians
   * @return sine of the angle, as if computed by `java.lang.Math.sin`
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def sin(columnName: String): Column = sin(Column(columnName))

  /**
   * @param e hyperbolic angle
   * @return hyperbolic sine of the given value, as if computed by `java.lang.Math.sinh`
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def sinh(e: Column): Column = withExpr { Sinh(e.expr) }

  /**
   * @param columnName hyperbolic angle
   * @return hyperbolic sine of the given value, as if computed by `java.lang.Math.sinh`
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def sinh(columnName: String): Column = sinh(Column(columnName))

  /**
   * @param e angle in radians
   * @return tangent of the given value, as if computed by `java.lang.Math.tan`
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def tan(e: Column): Column = withExpr { Tan(e.expr) }

  /**
   * @param columnName angle in radians
   * @return tangent of the given value, as if computed by `java.lang.Math.tan`
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def tan(columnName: String): Column = tan(Column(columnName))

  /**
   * @param e hyperbolic angle
   * @return hyperbolic tangent of the given value, as if computed by `java.lang.Math.tanh`
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def tanh(e: Column): Column = withExpr { Tanh(e.expr) }

  /**
   * @param columnName hyperbolic angle
   * @return hyperbolic tangent of the given value, as if computed by `java.lang.Math.tanh`
   *
   * @group math_funcs
   * @since 1.4.0
   */
  def tanh(columnName: String): Column = tanh(Column(columnName))

  /**
   * @group math_funcs
   * @since 1.4.0
   */
  @deprecated("Use degrees", "2.1.0")
  def toDegrees(e: Column): Column = degrees(e)

  /**
   * @group math_funcs
   * @since 1.4.0
   */
  @deprecated("Use degrees", "2.1.0")
  def toDegrees(columnName: String): Column = degrees(Column(columnName))

  /**
   * Converts an angle measured in radians to an approximately equivalent angle measured in degrees.
   *
   * @param e angle in radians
   * @return angle in degrees, as if computed by `java.lang.Math.toDegrees`
   *
   * @group math_funcs
   * @since 2.1.0
   */
  def degrees(e: Column): Column = withExpr { ToDegrees(e.expr) }

  /**
   * Converts an angle measured in radians to an approximately equivalent angle measured in degrees.
   *
   * @param columnName angle in radians
   * @return angle in degrees, as if computed by `java.lang.Math.toDegrees`
   *
   * @group math_funcs
   * @since 2.1.0
   */
  def degrees(columnName: String): Column = degrees(Column(columnName))

  /**
   * @group math_funcs
   * @since 1.4.0
   */
  @deprecated("Use radians", "2.1.0")
  def toRadians(e: Column): Column = radians(e)

  /**
   * @group math_funcs
   * @since 1.4.0
   */
  @deprecated("Use radians", "2.1.0")
  def toRadians(columnName: String): Column = radians(Column(columnName))

  /**
   * Converts an angle measured in degrees to an approximately equivalent angle measured in radians.
   *
   * @param e angle in degrees
   * @return angle in radians, as if computed by `java.lang.Math.toRadians`
   *
   * @group math_funcs
   * @since 2.1.0
   */
  def radians(e: Column): Column = withExpr { ToRadians(e.expr) }

  /**
   * Converts an angle measured in degrees to an approximately equivalent angle measured in radians.
   *
   * @param columnName angle in degrees
   * @return angle in radians, as if computed by `java.lang.Math.toRadians`
   *
   * @group math_funcs
   * @since 2.1.0
   */
  def radians(columnName: String): Column = radians(Column(columnName))

  /**
   * Returns the bucket number into which the value of this expression would fall
   * after being evaluated. Note that input arguments must follow conditions listed below;
   * otherwise, the method will return null.
   *
   * @param v value to compute a bucket number in the histogram
   * @param min minimum value of the histogram
   * @param max maximum value of the histogram
   * @param numBucket the number of buckets
   * @return the bucket number into which the value would fall after being evaluated
   * @group math_funcs
   * @since 3.5.0
   */
  def width_bucket(v: Column, min: Column, max: Column, numBucket: Column): Column = withExpr {
    WidthBucket(v.expr, min.expr, max.expr, numBucket.expr)
  }

  //////////////////////////////////////////////////////////////////////////////////////////////
  // Misc functions
  //////////////////////////////////////////////////////////////////////////////////////////////

  /**
   * Returns the current catalog.
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def current_catalog(): Column = withExpr { CurrentCatalog() }

  /**
   * Returns the current database.
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def current_database(): Column = withExpr { CurrentDatabase() }

  /**
   * Returns the current schema.
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def current_schema(): Column = call_function("current_schema")

  /**
   * Returns the user name of current execution context.
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def current_user(): Column = withExpr { CurrentUser() }

  /**
   * Calculates the MD5 digest of a binary column and returns the value
   * as a 32 character hex string.
   *
   * @group misc_funcs
   * @since 1.5.0
   */
  def md5(e: Column): Column = withExpr { Md5(e.expr) }

  /**
   * Calculates the SHA-1 digest of a binary column and returns the value
   * as a 40 character hex string.
   *
   * @group misc_funcs
   * @since 1.5.0
   */
  def sha1(e: Column): Column = withExpr { Sha1(e.expr) }

  /**
   * Calculates the SHA-2 family of hash functions of a binary column and
   * returns the value as a hex string.
   *
   * @param e column to compute SHA-2 on.
   * @param numBits one of 224, 256, 384, or 512.
   *
   * @group misc_funcs
   * @since 1.5.0
   */
  def sha2(e: Column, numBits: Int): Column = {
    require(Seq(0, 224, 256, 384, 512).contains(numBits),
      s"numBits $numBits is not in the permitted values (0, 224, 256, 384, 512)")
    withExpr { Sha2(e.expr, lit(numBits).expr) }
  }

  /**
   * Calculates the cyclic redundancy check value  (CRC32) of a binary column and
   * returns the value as a bigint.
   *
   * @group misc_funcs
   * @since 1.5.0
   */
  def crc32(e: Column): Column = withExpr { Crc32(e.expr) }

  /**
   * Calculates the hash code of given columns, and returns the result as an int column.
   *
   * @group misc_funcs
   * @since 2.0.0
   */
  @scala.annotation.varargs
  def hash(cols: Column*): Column = withExpr {
    new Murmur3Hash(cols.map(_.expr))
  }

  /**
   * Calculates the hash code of given columns using the 64-bit
   * variant of the xxHash algorithm, and returns the result as a long
   * column. The hash computation uses an initial seed of 42.
   *
   * @group misc_funcs
   * @since 3.0.0
   */
  @scala.annotation.varargs
  def xxhash64(cols: Column*): Column = withExpr {
    new XxHash64(cols.map(_.expr))
  }

  /**
   * Returns null if the condition is true, and throws an exception otherwise.
   *
   * @group misc_funcs
   * @since 3.1.0
   */
  def assert_true(c: Column): Column = withExpr {
    new AssertTrue(c.expr)
  }

  /**
   * Returns null if the condition is true; throws an exception with the error message otherwise.
   *
   * @group misc_funcs
   * @since 3.1.0
   */
  def assert_true(c: Column, e: Column): Column = withExpr {
    new AssertTrue(c.expr, e.expr)
  }

  /**
   * Throws an exception with the provided error message.
   *
   * @group misc_funcs
   * @since 3.1.0
   */
  def raise_error(c: Column): Column = withExpr {
    RaiseError(c.expr)
  }

  /**
   * Returns the estimated number of unique values given the binary representation
   * of a Datasketches HllSketch.
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def hll_sketch_estimate(c: Column): Column = withExpr {
    HllSketchEstimate(c.expr)
  }

  /**
   * Returns the estimated number of unique values given the binary representation
   * of a Datasketches HllSketch.
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def hll_sketch_estimate(columnName: String): Column = {
    hll_sketch_estimate(Column(columnName))
  }

  /**
   * Merges two binary representations of Datasketches HllSketch objects, using a
   * Datasketches Union object. Throws an exception if sketches have different
   * lgConfigK values.
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def hll_union(c1: Column, c2: Column): Column = withExpr {
    new HllUnion(c1.expr, c2.expr)
  }

  /**
   * Merges two binary representations of Datasketches HllSketch objects, using a
   * Datasketches Union object. Throws an exception if sketches have different
   * lgConfigK values.
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def hll_union(columnName1: String, columnName2: String): Column = {
    hll_union(Column(columnName1), Column(columnName2))
  }

  /**
   * Merges two binary representations of Datasketches HllSketch objects, using a
   * Datasketches Union object. Throws an exception if sketches have different
   * lgConfigK values and allowDifferentLgConfigK is set to false.
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def hll_union(c1: Column, c2: Column, allowDifferentLgConfigK: Boolean): Column = withExpr {
    new HllUnion(c1.expr, c2.expr, Literal(allowDifferentLgConfigK))
  }

  /**
   * Merges two binary representations of Datasketches HllSketch objects, using a
   * Datasketches Union object. Throws an exception if sketches have different
   * lgConfigK values and allowDifferentLgConfigK is set to false.
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def hll_union(columnName1: String, columnName2: String, allowDifferentLgConfigK: Boolean):
  Column = {
    hll_union(Column(columnName1), Column(columnName2), allowDifferentLgConfigK)
  }

  /**
   * Returns the user name of current execution context.
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def user(): Column = call_function("user")

  /**
   * Returns an universally unique identifier (UUID) string. The value is returned as a canonical
   * UUID 36-character string.
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def uuid(): Column = withExpr { new Uuid() }

  /**
   * Returns an encrypted value of `input` using AES in given `mode` with the specified `padding`.
   * Key lengths of 16, 24 and 32 bits are supported. Supported combinations of (`mode`,
   * `padding`) are ('ECB', 'PKCS'), ('GCM', 'NONE') and ('CBC', 'PKCS'). Optional initialization
   * vectors (IVs) are only supported for CBC and GCM modes. These must be 16 bytes for CBC and 12
   * bytes for GCM. If not provided, a random vector will be generated and prepended to the
   * output. Optional additional authenticated data (AAD) is only supported for GCM. If provided
   * for encryption, the identical AAD value must be provided for decryption. The default mode is
   * GCM.
   *
   * @param input
   *   The binary value to encrypt.
   * @param key
   *   The passphrase to use to encrypt the data.
   * @param mode
   *   Specifies which block cipher mode should be used to encrypt messages. Valid modes: ECB,
   *   GCM, CBC.
   * @param padding
   *   Specifies how to pad messages whose length is not a multiple of the block size. Valid
   *   values: PKCS, NONE, DEFAULT. The DEFAULT padding means PKCS for ECB, NONE for GCM and PKCS
   *   for CBC.
   * @param iv
   *   Optional initialization vector. Only supported for CBC and GCM modes. Valid values: None or
   *   "". 16-byte array for CBC mode. 12-byte array for GCM mode.
   * @param aad
   *   Optional additional authenticated data. Only supported for GCM mode. This can be any
   *   free-form input and must be provided for both encryption and decryption.
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def aes_encrypt(
      input: Column,
      key: Column,
      mode: Column,
      padding: Column,
      iv: Column,
      aad: Column): Column = withExpr {
    AesEncrypt(input.expr, key.expr, mode.expr, padding.expr, iv.expr, aad.expr)
  }

  /**
   * Returns an encrypted value of `input`.
   *
   * @see
   *   `org.apache.spark.sql.functions.aes_encrypt(Column, Column, Column, Column, Column,
   *   Column)`
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def aes_encrypt(
      input: Column,
      key: Column,
      mode: Column,
      padding: Column,
      iv: Column): Column = withExpr {
    new AesEncrypt(input.expr, key.expr, mode.expr, padding.expr, iv.expr)
  }

  /**
   * Returns an encrypted value of `input`.
   *
   * @see
   *   `org.apache.spark.sql.functions.aes_encrypt(Column, Column, Column, Column, Column,
   *   Column)`
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def aes_encrypt(input: Column, key: Column, mode: Column, padding: Column): Column = withExpr {
    new AesEncrypt(input.expr, key.expr, mode.expr, padding.expr)
  }

  /**
   * Returns an encrypted value of `input`.
   *
   * @see
   *   `org.apache.spark.sql.functions.aes_encrypt(Column, Column, Column, Column, Column,
   *   Column)`
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def aes_encrypt(input: Column, key: Column, mode: Column): Column = withExpr {
    new AesEncrypt(input.expr, key.expr, mode.expr)
  }

  /**
   * Returns an encrypted value of `input`.
   *
   * @see
   *   `org.apache.spark.sql.functions.aes_encrypt(Column, Column, Column, Column, Column,
   *   Column)`
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def aes_encrypt(input: Column, key: Column): Column = withExpr {
    new AesEncrypt(input.expr, key.expr)
  }

  /**
   * Returns a decrypted value of `input` using AES in `mode` with `padding`. Key lengths of 16,
   * 24 and 32 bits are supported. Supported combinations of (`mode`, `padding`) are ('ECB',
   * 'PKCS'), ('GCM', 'NONE') and ('CBC', 'PKCS'). Optional additional authenticated data (AAD) is
   * only supported for GCM. If provided for encryption, the identical AAD value must be provided
   * for decryption. The default mode is GCM.
   *
   * @param input
   *   The binary value to decrypt.
   * @param key
   *   The passphrase to use to decrypt the data.
   * @param mode
   *   Specifies which block cipher mode should be used to decrypt messages. Valid modes: ECB,
   *   GCM, CBC.
   * @param padding
   *   Specifies how to pad messages whose length is not a multiple of the block size. Valid
   *   values: PKCS, NONE, DEFAULT. The DEFAULT padding means PKCS for ECB, NONE for GCM and PKCS
   *   for CBC.
   * @param aad
   *   Optional additional authenticated data. Only supported for GCM mode. This can be any
   *   free-form input and must be provided for both encryption and decryption.
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def aes_decrypt(
      input: Column,
      key: Column,
      mode: Column,
      padding: Column,
      aad: Column): Column = withExpr {
    AesDecrypt(input.expr, key.expr, mode.expr, padding.expr, aad.expr)
  }

  /**
   * Returns a decrypted value of `input`.
   *
   * @see
   *   `org.apache.spark.sql.functions.aes_decrypt(Column, Column, Column, Column, Column)`
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def aes_decrypt(
      input: Column,
      key: Column,
      mode: Column,
      padding: Column): Column = withExpr {
    new AesDecrypt(input.expr, key.expr, mode.expr, padding.expr)
  }

  /**
   * Returns a decrypted value of `input`.
   *
   * @see
   *   `org.apache.spark.sql.functions.aes_decrypt(Column, Column, Column, Column, Column)`
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def aes_decrypt(input: Column, key: Column, mode: Column): Column = withExpr {
    new AesDecrypt(input.expr, key.expr, mode.expr)
  }

  /**
   * Returns a decrypted value of `input`.
   *
   * @see
   *   `org.apache.spark.sql.functions.aes_decrypt(Column, Column, Column, Column, Column)`
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def aes_decrypt(input: Column, key: Column): Column = withExpr {
    new AesDecrypt(input.expr, key.expr)
  }

  /**
   * This is a special version of `aes_decrypt` that performs the same operation, but returns a
   * NULL value instead of raising an error if the decryption cannot be performed.
   *
   * @param input
   *   The binary value to decrypt.
   * @param key
   *   The passphrase to use to decrypt the data.
   * @param mode
   *   Specifies which block cipher mode should be used to decrypt messages. Valid modes: ECB,
   *   GCM, CBC.
   * @param padding
   *   Specifies how to pad messages whose length is not a multiple of the block size. Valid
   *   values: PKCS, NONE, DEFAULT. The DEFAULT padding means PKCS for ECB, NONE for GCM and PKCS
   *   for CBC.
   * @param aad
   *   Optional additional authenticated data. Only supported for GCM mode. This can be any
   *   free-form input and must be provided for both encryption and decryption.
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def try_aes_decrypt(
      input: Column,
      key: Column,
      mode: Column,
      padding: Column,
      aad: Column): Column = withExpr {
    new TryAesDecrypt(input.expr, key.expr, mode.expr, padding.expr, aad.expr)
  }

  /**
   * Returns a decrypted value of `input`.
   *
   * @see
   *   `org.apache.spark.sql.functions.try_aes_decrypt(Column, Column, Column, Column, Column)`
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def try_aes_decrypt(
      input: Column,
      key: Column,
      mode: Column,
      padding: Column): Column = withExpr {
    new TryAesDecrypt(input.expr, key.expr, mode.expr, padding.expr)
  }

  /**
   * Returns a decrypted value of `input`.
   *
   * @see
   *   `org.apache.spark.sql.functions.try_aes_decrypt(Column, Column, Column, Column, Column)`
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def try_aes_decrypt(input: Column, key: Column, mode: Column): Column = withExpr {
    new TryAesDecrypt(input.expr, key.expr, mode.expr)
  }

  /**
   * Returns a decrypted value of `input`.
   *
   * @see
   *   `org.apache.spark.sql.functions.try_aes_decrypt(Column, Column, Column, Column, Column)`
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def try_aes_decrypt(input: Column, key: Column): Column = withExpr {
    new TryAesDecrypt(input.expr, key.expr)
  }

  /**
   * Returns a sha1 hash value as a hex string of the `col`.
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def sha(col: Column): Column = call_function("sha", col)

  /**
   * Returns the length of the block being read, or -1 if not available.
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def input_file_block_length(): Column = withExpr {
    InputFileBlockLength()
  }

  /**
   * Returns the start offset of the block being read, or -1 if not available.
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def input_file_block_start(): Column = withExpr {
    InputFileBlockStart()
  }

  /**
   * Calls a method with reflection.
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def reflect(cols: Column*): Column = withExpr {
    CallMethodViaReflection(cols.map(_.expr))
  }

  /**
   * Calls a method with reflection.
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def java_method(cols: Column*): Column =
    call_function("java_method", cols: _*)

  /**
   * Returns the Spark version. The string contains 2 fields, the first being a release version
   * and the second being a git revision.
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def version(): Column = withExpr {
    SparkVersion()
  }

  /**
   * Return DDL-formatted type string for the data type of the input.
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def typeof(col: Column): Column = withExpr {
    TypeOf(col.expr)
  }

  /**
   * Separates `col1`, ..., `colk` into `n` rows. Uses column names col0, col1, etc. by default
   * unless specified otherwise.
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def stack(cols: Column*): Column = withExpr {
    Stack(cols.map(_.expr))
  }

  /**
   * Returns a random value with independent and identically distributed (i.i.d.) uniformly
   * distributed values in [0, 1).
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def random(seed: Column): Column = call_function("random", seed)

  /**
   * Returns a random value with independent and identically distributed (i.i.d.) uniformly
   * distributed values in [0, 1).
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def random(): Column = call_function("random")

  /**
   * Returns the bucket number for the given input column.
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def bitmap_bucket_number(col: Column): Column = withExpr {
    BitmapBucketNumber(col.expr)
  }

  /**
   * Returns the bit position for the given input column.
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def bitmap_bit_position(col: Column): Column = withExpr {
    BitmapBitPosition(col.expr)
  }

  /**
   * Returns a bitmap with the positions of the bits set from all the values from the input column.
   * The input column will most likely be bitmap_bit_position().
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def bitmap_construct_agg(col: Column): Column = withAggregateFunction {
    BitmapConstructAgg(col.expr)
  }

  /**
   * Returns the number of set bits in the input bitmap.
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def bitmap_count(col: Column): Column = withExpr {
    BitmapCount(col.expr)
  }

  /**
   * Returns a bitmap that is the bitwise OR of all of the bitmaps from the input column.
   * The input column should be bitmaps created from bitmap_construct_agg().
   *
   * @group misc_funcs
   * @since 3.5.0
   */
  def bitmap_or_agg(col: Column): Column = withAggregateFunction {
    BitmapOrAgg(col.expr)
  }

  //////////////////////////////////////////////////////////////////////////////////////////////
  // String functions
  //////////////////////////////////////////////////////////////////////////////////////////////

  /**
   * Computes the numeric value of the first character of the string column, and returns the
   * result as an int column.
   *
   * @group string_funcs
   * @since 1.5.0
   */
  def ascii(e: Column): Column = withExpr { Ascii(e.expr) }

  /**
   * Computes the BASE64 encoding of a binary column and returns it as a string column.
   * This is the reverse of unbase64.
   *
   * @group string_funcs
   * @since 1.5.0
   */
  def base64(e: Column): Column = withExpr { Base64(e.expr) }

  /**
   * Calculates the bit length for the specified string column.
   *
   * @group string_funcs
   * @since 3.3.0
   */
  def bit_length(e: Column): Column = withExpr { BitLength(e.expr) }

  /**
   * Concatenates multiple input string columns together into a single string column,
   * using the given separator.
   *
   * @note Input strings which are null are skipped.
   *
   * @group string_funcs
   * @since 1.5.0
   */
  @scala.annotation.varargs
  def concat_ws(sep: String, exprs: Column*): Column = withExpr {
    ConcatWs(Literal.create(sep, StringType) +: exprs.map(_.expr))
  }

  /**
   * Computes the first argument into a string from a binary using the provided character set
   * (one of 'US-ASCII', 'ISO-8859-1', 'UTF-8', 'UTF-16BE', 'UTF-16LE', 'UTF-16').
   * If either argument is null, the result will also be null.
   *
   * @group string_funcs
   * @since 1.5.0
   */
  def decode(value: Column, charset: String): Column = withExpr {
    StringDecode(value.expr, lit(charset).expr)
  }

  /**
   * Computes the first argument into a binary from a string using the provided character set
   * (one of 'US-ASCII', 'ISO-8859-1', 'UTF-8', 'UTF-16BE', 'UTF-16LE', 'UTF-16').
   * If either argument is null, the result will also be null.
   *
   * @group string_funcs
   * @since 1.5.0
   */
  def encode(value: Column, charset: String): Column = withExpr {
    Encode(value.expr, lit(charset).expr)
  }

  /**
   * Formats numeric column x to a format like '#,###,###.##', rounded to d decimal places
   * with HALF_EVEN round mode, and returns the result as a string column.
   *
   * If d is 0, the result has no decimal point or fractional part.
   * If d is less than 0, the result will be null.
   *
   * @group string_funcs
   * @since 1.5.0
   */
  def format_number(x: Column, d: Int): Column = withExpr {
    FormatNumber(x.expr, lit(d).expr)
  }

  /**
   * Formats the arguments in printf-style and returns the result as a string column.
   *
   * @group string_funcs
   * @since 1.5.0
   */
  @scala.annotation.varargs
  def format_string(format: String, arguments: Column*): Column = withExpr {
    FormatString((lit(format) +: arguments).map(_.expr): _*)
  }

  /**
   * Returns a new string column by converting the first letter of each word to uppercase.
   * Words are delimited by whitespace.
   *
   * For example, "hello world" will become "Hello World".
   *
   * @group string_funcs
   * @since 1.5.0
   */
  def initcap(e: Column): Column = withExpr { InitCap(e.expr) }

  /**
   * Locate the position of the first occurrence of substr column in the given string.
   * Returns null if either of the arguments are null.
   *
   * @note The position is not zero based, but 1 based index. Returns 0 if substr
   * could not be found in str.
   *
   * @group string_funcs
   * @since 1.5.0
   */
  def instr(str: Column, substring: String): Column = withExpr {
    StringInstr(str.expr, lit(substring).expr)
  }

  /**
   * Computes the character length of a given string or number of bytes of a binary string.
   * The length of character strings include the trailing spaces. The length of binary strings
   * includes binary zeros.
   *
   * @group string_funcs
   * @since 1.5.0
   */
  def length(e: Column): Column = withExpr { Length(e.expr) }

  /**
   * Computes the character length of a given string or number of bytes of a binary string.
   * The length of character strings include the trailing spaces. The length of binary strings
   * includes binary zeros.
   *
   * @group string_funcs
   * @since 3.5.0
   */
  def len(e: Column): Column = withExpr { Length(e.expr) }

  /**
   * Converts a string column to lower case.
   *
   * @group string_funcs
   * @since 1.3.0
   */
  def lower(e: Column): Column = withExpr { Lower(e.expr) }

  /**
   * Computes the Levenshtein distance of the two given string columns if it's less than or
   * equal to a given threshold.
   * @return result distance, or -1
   * @group string_funcs
   * @since 3.5.0
   */
  def levenshtein(l: Column, r: Column, threshold: Int): Column = withExpr {
    Levenshtein(l.expr, r.expr, Some(Literal(threshold)))
  }

  /**
   * Computes the Levenshtein distance of the two given string columns.
   * @group string_funcs
   * @since 1.5.0
   */
  def levenshtein(l: Column, r: Column): Column = withExpr { Levenshtein(l.expr, r.expr, None) }

  /**
   * Locate the position of the first occurrence of substr.
   *
   * @note The position is not zero based, but 1 based index. Returns 0 if substr
   * could not be found in str.
   *
   * @group string_funcs
   * @since 1.5.0
   */
  def locate(substr: String, str: Column): Column = withExpr {
    new StringLocate(lit(substr).expr, str.expr)
  }

  /**
   * Locate the position of the first occurrence of substr in a string column, after position pos.
   *
   * @note The position is not zero based, but 1 based index. returns 0 if substr
   * could not be found in str.
   *
   * @group string_funcs
   * @since 1.5.0
   */
  def locate(substr: String, str: Column, pos: Int): Column = withExpr {
    StringLocate(lit(substr).expr, str.expr, lit(pos).expr)
  }

  /**
   * Left-pad the string column with pad to a length of len. If the string column is longer
   * than len, the return value is shortened to len characters.
   *
   * @group string_funcs
   * @since 1.5.0
   */
  def lpad(str: Column, len: Int, pad: String): Column = withExpr {
    StringLPad(str.expr, lit(len).expr, lit(pad).expr)
  }

  /**
   * Left-pad the binary column with pad to a byte length of len. If the binary column is longer
   * than len, the return value is shortened to len bytes.
   *
   * @group string_funcs
   * @since 3.3.0
   */
  def lpad(str: Column, len: Int, pad: Array[Byte]): Column =
    call_function("lpad", str, lit(len), lit(pad))

  /**
   * Trim the spaces from left end for the specified string value.
   *
   * @group string_funcs
   * @since 1.5.0
   */
  def ltrim(e: Column): Column = withExpr {StringTrimLeft(e.expr) }

  /**
   * Trim the specified character string from left end for the specified string column.
   * @group string_funcs
   * @since 2.3.0
   */
  def ltrim(e: Column, trimString: String): Column = withExpr {
    StringTrimLeft(e.expr, Literal(trimString))
  }

  /**
   * Calculates the byte length for the specified string column.
   *
   * @group string_funcs
   * @since 3.3.0
   */
  def octet_length(e: Column): Column = withExpr { OctetLength(e.expr) }

  /**
   * Returns true if `str` matches `regexp`, or false otherwise.
   *
   * @group string_funcs
   * @since 3.5.0
   */
  def rlike(str: Column, regexp: Column): Column = withExpr {
    RLike(str.expr, regexp.expr)
  }

  /**
   * Returns true if `str` matches `regexp`, or false otherwise.
   *
   * @group string_funcs
   * @since 3.5.0
   */
  def regexp(str: Column, regexp: Column): Column =
    call_function("regexp", str, regexp)

  /**
   * Returns true if `str` matches `regexp`, or false otherwise.
   *
   * @group string_funcs
   * @since 3.5.0
   */
  def regexp_like(str: Column, regexp: Column): Column =
    call_function("regexp_like", str, regexp)

  /**
   * Returns a count of the number of times that the regular expression pattern `regexp`
   * is matched in the string `str`.
   *
   * @group string_funcs
   * @since 3.5.0
   */
  def regexp_count(str: Column, regexp: Column): Column = withExpr {
    RegExpCount(str.expr, regexp.expr)
  }

  /**
   * Extract a specific group matched by a Java regex, from the specified string column.
   * If the regex did not match, or the specified group did not match, an empty string is returned.
   * if the specified group index exceeds the group count of regex, an IllegalArgumentException
   * will be thrown.
   *
   * @group string_funcs
   * @since 1.5.0
   */
  def regexp_extract(e: Column, exp: String, groupIdx: Int): Column = withExpr {
    RegExpExtract(e.expr, lit(exp).expr, lit(groupIdx).expr)
  }

  /**
   * Extract all strings in the `str` that match the `regexp` expression and
   * corresponding to the first regex group index.
   *
   * @group string_funcs
   * @since 3.5.0
   */
  def regexp_extract_all(str: Column, regexp: Column): Column = withExpr {
    new RegExpExtractAll(str.expr, regexp.expr)
  }

  /**
   * Extract all strings in the `str` that match the `regexp` expression and
   * corresponding to the regex group index.
   *
   * @group string_funcs
   * @since 3.5.0
   */
  def regexp_extract_all(str: Column, regexp: Column, idx: Column): Column = withExpr {
    RegExpExtractAll(str.expr, regexp.expr, idx.expr)
  }

  /**
   * Replace all substrings of the specified string value that match regexp with rep.
   *
   * @group string_funcs
   * @since 1.5.0
   */
  def regexp_replace(e: Column, pattern: String, replacement: String): Column = withExpr {
    RegExpReplace(e.expr, lit(pattern).expr, lit(replacement).expr)
  }

  /**
   * Replace all substrings of the specified string value that match regexp with rep.
   *
   * @group string_funcs
   * @since 2.1.0
   */
  def regexp_replace(e: Column, pattern: Column, replacement: Column): Column = withExpr {
    RegExpReplace(e.expr, pattern.expr, replacement.expr)
  }

  /**
   * Returns the substring that matches the regular expression `regexp` within the string `str`.
   * If the regular expression is not found, the result is null.
   *
   * @group string_funcs
   * @since 3.5.0
   */
  def regexp_substr(str: Column, regexp: Column): Column = withExpr {
    RegExpSubStr(str.expr, regexp.expr)
  }

  /**
   * Searches a string for a regular expression and returns an integer that indicates
   * the beginning position of the matched substring. Positions are 1-based, not 0-based.
   * If no match is found, returns 0.
   *
   * @group string_funcs
   * @since 3.5.0
   */
  def regexp_instr(str: Column, regexp: Column): Column = withExpr {
    new RegExpInStr(str.expr, regexp.expr)
  }

  /**
   * Searches a string for a regular expression and returns an integer that indicates
   * the beginning position of the matched substring. Positions are 1-based, not 0-based.
   * If no match is found, returns 0.
   *
   * @group string_funcs
   * @since 3.5.0
   */
  def regexp_instr(str: Column, regexp: Column, idx: Column): Column = withExpr {
    RegExpInStr(str.expr, regexp.expr, idx.expr)
  }

  /**
   * Decodes a BASE64 encoded string column and returns it as a binary column.
   * This is the reverse of base64.
   *
   * @group string_funcs
   * @since 1.5.0
   */
  def unbase64(e: Column): Column = withExpr { UnBase64(e.expr) }

  /**
   * Right-pad the string column with pad to a length of len. If the string column is longer
   * than len, the return value is shortened to len characters.
   *
   * @group string_funcs
   * @since 1.5.0
   */
  def rpad(str: Column, len: Int, pad: String): Column = withExpr {
    StringRPad(str.expr, lit(len).expr, lit(pad).expr)
  }

  /**
   * Right-pad the binary column with pad to a byte length of len. If the binary column is longer
   * than len, the return value is shortened to len bytes.
   *
   * @group string_funcs
   * @since 3.3.0
   */
  def rpad(str: Column, len: Int, pad: Array[Byte]): Column =
    call_function("rpad", str, lit(len), lit(pad))

  /**
   * Repeats a string column n times, and returns it as a new string column.
   *
   * @group string_funcs
   * @since 1.5.0
   */
  def repeat(str: Column, n: Int): Column = withExpr {
    StringRepeat(str.expr, lit(n).expr)
  }

  /**
   * Trim the spaces from right end for the specified string value.
   *
   * @group string_funcs
   * @since 1.5.0
   */
  def rtrim(e: Column): Column = withExpr { StringTrimRight(e.expr) }

  /**
   * Trim the specified character string from right end for the specified string column.
   * @group string_funcs
   * @since 2.3.0
   */
  def rtrim(e: Column, trimString: String): Column = withExpr {
    StringTrimRight(e.expr, Literal(trimString))
  }

  /**
   * Returns the soundex code for the specified expression.
   *
   * @group string_funcs
   * @since 1.5.0
   */
  def soundex(e: Column): Column = withExpr { SoundEx(e.expr) }

  /**
   * Splits str around matches of the given pattern.
   *
   * @param str a string expression to split
   * @param pattern a string representing a regular expression. The regex string should be
   *                a Java regular expression.
   *
   * @group string_funcs
   * @since 1.5.0
   */
  def split(str: Column, pattern: String): Column = withExpr {
    StringSplit(str.expr, Literal(pattern), Literal(-1))
  }

  /**
   * Splits str around matches of the given pattern.
   *
   * @param str a string expression to split
   * @param pattern a string representing a regular expression. The regex string should be
   *                a Java regular expression.
   * @param limit an integer expression which controls the number of times the regex is applied.
   *        
    *
  • limit greater than 0: The resulting array's length will not be more than limit, * and the resulting array's last entry will contain all input beyond the last * matched regex.
  • *
  • limit less than or equal to 0: `regex` will be applied as many times as * possible, and the resulting array can be of any size.
  • *
* * @group string_funcs * @since 3.0.0 */ def split(str: Column, pattern: String, limit: Int): Column = withExpr { StringSplit(str.expr, Literal(pattern), Literal(limit)) } /** * Substring starts at `pos` and is of length `len` when str is String type or * returns the slice of byte array that starts at `pos` in byte and is of length `len` * when str is Binary type * * @note The position is not zero based, but 1 based index. * * @group string_funcs * @since 1.5.0 */ def substring(str: Column, pos: Int, len: Int): Column = withExpr { Substring(str.expr, lit(pos).expr, lit(len).expr) } /** * Returns the substring from string str before count occurrences of the delimiter delim. * If count is positive, everything the left of the final delimiter (counting from left) is * returned. If count is negative, every to the right of the final delimiter (counting from the * right) is returned. substring_index performs a case-sensitive match when searching for delim. * * @group string_funcs */ def substring_index(str: Column, delim: String, count: Int): Column = withExpr { SubstringIndex(str.expr, lit(delim).expr, lit(count).expr) } /** * Overlay the specified portion of `src` with `replace`, * starting from byte position `pos` of `src` and proceeding for `len` bytes. * * @group string_funcs * @since 3.0.0 */ def overlay(src: Column, replace: Column, pos: Column, len: Column): Column = withExpr { Overlay(src.expr, replace.expr, pos.expr, len.expr) } /** * Overlay the specified portion of `src` with `replace`, * starting from byte position `pos` of `src`. * * @group string_funcs * @since 3.0.0 */ def overlay(src: Column, replace: Column, pos: Column): Column = withExpr { new Overlay(src.expr, replace.expr, pos.expr) } /** * Splits a string into arrays of sentences, where each sentence is an array of words. * @group string_funcs * @since 3.2.0 */ def sentences(string: Column, language: Column, country: Column): Column = withExpr { Sentences(string.expr, language.expr, country.expr) } /** * Splits a string into arrays of sentences, where each sentence is an array of words. * The default locale is used. * @group string_funcs * @since 3.2.0 */ def sentences(string: Column): Column = withExpr { Sentences(string.expr) } /** * Translate any character in the src by a character in replaceString. * The characters in replaceString correspond to the characters in matchingString. * The translate will happen when any character in the string matches the character * in the `matchingString`. * * @group string_funcs * @since 1.5.0 */ def translate(src: Column, matchingString: String, replaceString: String): Column = withExpr { StringTranslate(src.expr, lit(matchingString).expr, lit(replaceString).expr) } /** * Trim the spaces from both ends for the specified string column. * * @group string_funcs * @since 1.5.0 */ def trim(e: Column): Column = withExpr { StringTrim(e.expr) } /** * Trim the specified character from both ends for the specified string column. * @group string_funcs * @since 2.3.0 */ def trim(e: Column, trimString: String): Column = withExpr { StringTrim(e.expr, Literal(trimString)) } /** * Converts a string column to upper case. * * @group string_funcs * @since 1.3.0 */ def upper(e: Column): Column = withExpr { Upper(e.expr) } /** * Converts the input `e` to a binary value based on the supplied `format`. * The `format` can be a case-insensitive string literal of "hex", "utf-8", "utf8", or "base64". * By default, the binary format for conversion is "hex" if `format` is omitted. * The function returns NULL if at least one of the input parameters is NULL. * * @group string_funcs * @since 3.5.0 */ def to_binary(e: Column, format: Column): Column = withExpr { new ToBinary(e.expr, format.expr) } /** * Converts the input `e` to a binary value based on the default format "hex". * The function returns NULL if at least one of the input parameters is NULL. * * @group string_funcs * @since 3.5.0 */ def to_binary(e: Column): Column = withExpr { new ToBinary(e.expr) } /** * Convert `e` to a string based on the `format`. * Throws an exception if the conversion fails. The format can consist of the following * characters, case insensitive: * '0' or '9': Specifies an expected digit between 0 and 9. A sequence of 0 or 9 in the format * string matches a sequence of digits in the input value, generating a result string of the * same length as the corresponding sequence in the format string. The result string is * left-padded with zeros if the 0/9 sequence comprises more digits than the matching part of * the decimal value, starts with 0, and is before the decimal point. Otherwise, it is * padded with spaces. * '.' or 'D': Specifies the position of the decimal point (optional, only allowed once). * ',' or 'G': Specifies the position of the grouping (thousands) separator (,). There must be * a 0 or 9 to the left and right of each grouping separator. * '$': Specifies the location of the $ currency sign. This character may only be specified * once. * 'S' or 'MI': Specifies the position of a '-' or '+' sign (optional, only allowed once at * the beginning or end of the format string). Note that 'S' prints '+' for positive values * but 'MI' prints a space. * 'PR': Only allowed at the end of the format string; specifies that the result string will be * wrapped by angle brackets if the input value is negative. * * @group string_funcs * @since 3.5.0 */ def to_char(e: Column, format: Column): Column = withExpr { ToCharacter(e.expr, format.expr) } /** * Convert `e` to a string based on the `format`. * Throws an exception if the conversion fails. The format can consist of the following * characters, case insensitive: * '0' or '9': Specifies an expected digit between 0 and 9. A sequence of 0 or 9 in the format * string matches a sequence of digits in the input value, generating a result string of the * same length as the corresponding sequence in the format string. The result string is * left-padded with zeros if the 0/9 sequence comprises more digits than the matching part of * the decimal value, starts with 0, and is before the decimal point. Otherwise, it is * padded with spaces. * '.' or 'D': Specifies the position of the decimal point (optional, only allowed once). * ',' or 'G': Specifies the position of the grouping (thousands) separator (,). There must be * a 0 or 9 to the left and right of each grouping separator. * '$': Specifies the location of the $ currency sign. This character may only be specified * once. * 'S' or 'MI': Specifies the position of a '-' or '+' sign (optional, only allowed once at * the beginning or end of the format string). Note that 'S' prints '+' for positive values * but 'MI' prints a space. * 'PR': Only allowed at the end of the format string; specifies that the result string will be * wrapped by angle brackets if the input value is negative. * * @group string_funcs * @since 3.5.0 */ def to_varchar(e: Column, format: Column): Column = withExpr { ToCharacter(e.expr, format.expr) } /** * Convert string 'e' to a number based on the string format 'format'. * Throws an exception if the conversion fails. The format can consist of the following * characters, case insensitive: * '0' or '9': Specifies an expected digit between 0 and 9. A sequence of 0 or 9 in the format * string matches a sequence of digits in the input string. If the 0/9 sequence starts with * 0 and is before the decimal point, it can only match a digit sequence of the same size. * Otherwise, if the sequence starts with 9 or is after the decimal point, it can match a * digit sequence that has the same or smaller size. * '.' or 'D': Specifies the position of the decimal point (optional, only allowed once). * ',' or 'G': Specifies the position of the grouping (thousands) separator (,). There must be * a 0 or 9 to the left and right of each grouping separator. 'expr' must match the * grouping separator relevant for the size of the number. * '$': Specifies the location of the $ currency sign. This character may only be specified * once. * 'S' or 'MI': Specifies the position of a '-' or '+' sign (optional, only allowed once at * the beginning or end of the format string). Note that 'S' allows '-' but 'MI' does not. * 'PR': Only allowed at the end of the format string; specifies that 'expr' indicates a * negative number with wrapping angled brackets. * * @group string_funcs * @since 3.5.0 */ def to_number(e: Column, format: Column): Column = withExpr { ToNumber(e.expr, format.expr) } /** * Replaces all occurrences of `search` with `replace`. * * @param src * A column of string to be replaced * @param search * A column of string, If `search` is not found in `str`, `str` is returned unchanged. * @param replace * A column of string, If `replace` is not specified or is an empty string, nothing replaces * the string that is removed from `str`. * * @group string_funcs * @since 3.5.0 */ def replace(src: Column, search: Column, replace: Column): Column = withExpr { StringReplace(src.expr, search.expr, replace.expr) } /** * Replaces all occurrences of `search` with `replace`. * * @param src * A column of string to be replaced * @param search * A column of string, If `search` is not found in `src`, `src` is returned unchanged. * * @group string_funcs * @since 3.5.0 */ def replace(src: Column, search: Column): Column = withExpr { new StringReplace(src.expr, search.expr) } /** * Splits `str` by delimiter and return requested part of the split (1-based). * If any input is null, returns null. if `partNum` is out of range of split parts, * returns empty string. If `partNum` is 0, throws an error. If `partNum` is negative, * the parts are counted backward from the end of the string. * If the `delimiter` is an empty string, the `str` is not split. * * @group string_funcs * @since 3.5.0 */ def split_part(str: Column, delimiter: Column, partNum: Column): Column = withExpr { SplitPart(str.expr, delimiter.expr, partNum.expr) } /** * Returns the substring of `str` that starts at `pos` and is of length `len`, * or the slice of byte array that starts at `pos` and is of length `len`. * * @group string_funcs * @since 3.5.0 */ def substr(str: Column, pos: Column, len: Column): Column = call_function("substr", str, pos, len) /** * Returns the substring of `str` that starts at `pos`, * or the slice of byte array that starts at `pos`. * * @group string_funcs * @since 3.5.0 */ def substr(str: Column, pos: Column): Column = call_function("substr", str, pos) /** * Extracts a part from a URL. * * @group string_funcs * @since 3.5.0 */ def parse_url(url: Column, partToExtract: Column, key: Column): Column = withExpr { ParseUrl(Seq(url.expr, partToExtract.expr, key.expr)) } /** * Extracts a part from a URL. * * @group string_funcs * @since 3.5.0 */ def parse_url(url: Column, partToExtract: Column): Column = withExpr { ParseUrl(Seq(url.expr, partToExtract.expr)) } /** * Formats the arguments in printf-style and returns the result as a string column. * * @group string_funcs * @since 3.5.0 */ def printf(format: Column, arguments: Column*): Column = call_function("printf", (format +: arguments): _*) /** * Decodes a `str` in 'application/x-www-form-urlencoded' format * using a specific encoding scheme. * * @group string_funcs * @since 3.5.0 */ def url_decode(str: Column): Column = withExpr { UrlDecode(str.expr) } /** * Translates a string into 'application/x-www-form-urlencoded' format * using a specific encoding scheme. * * @group string_funcs * @since 3.5.0 */ def url_encode(str: Column): Column = withExpr { UrlEncode(str.expr) } /** * Returns the position of the first occurrence of `substr` in `str` after position `start`. * The given `start` and return value are 1-based. * * @group string_funcs * @since 3.5.0 */ def position(substr: Column, str: Column, start: Column): Column = call_function("position", substr, str, start) /** * Returns the position of the first occurrence of `substr` in `str` after position `1`. * The return value are 1-based. * * @group string_funcs * @since 3.5.0 */ def position(substr: Column, str: Column): Column = call_function("position", substr, str) /** * Returns a boolean. The value is True if str ends with suffix. * Returns NULL if either input expression is NULL. Otherwise, returns False. * Both str or suffix must be of STRING or BINARY type. * * @group string_funcs * @since 3.5.0 */ def endswith(str: Column, suffix: Column): Column = call_function("endswith", str, suffix) /** * Returns a boolean. The value is True if str starts with prefix. * Returns NULL if either input expression is NULL. Otherwise, returns False. * Both str or prefix must be of STRING or BINARY type. * * @group string_funcs * @since 3.5.0 */ def startswith(str: Column, prefix: Column): Column = call_function("startswith", str, prefix) /** * Returns the ASCII character having the binary equivalent to `n`. * If n is larger than 256 the result is equivalent to char(n % 256) * * @group string_funcs * @since 3.5.0 */ def char(n: Column): Column = call_function("char", n) /** * Removes the leading and trailing space characters from `str`. * * @group string_funcs * @since 3.5.0 */ def btrim(str: Column): Column = withExpr { new StringTrimBoth(str.expr) } /** * Remove the leading and trailing `trim` characters from `str`. * * @group string_funcs * @since 3.5.0 */ def btrim(str: Column, trim: Column): Column = withExpr { new StringTrimBoth(str.expr, trim.expr) } /** * This is a special version of `to_binary` that performs the same operation, but returns a NULL * value instead of raising an error if the conversion cannot be performed. * * @group string_funcs * @since 3.5.0 */ def try_to_binary(e: Column, format: Column): Column = withExpr { new TryToBinary(e.expr, format.expr) } /** * This is a special version of `to_binary` that performs the same operation, but returns a NULL * value instead of raising an error if the conversion cannot be performed. * * @group string_funcs * @since 3.5.0 */ def try_to_binary(e: Column): Column = withExpr { new TryToBinary(e.expr) } /** * Convert string `e` to a number based on the string format `format`. Returns NULL if the * string `e` does not match the expected format. The format follows the same semantics as the * to_number function. * * @group string_funcs * @since 3.5.0 */ def try_to_number(e: Column, format: Column): Column = withExpr { TryToNumber(e.expr, format.expr) } /** * Returns the character length of string data or number of bytes of binary data. * The length of string data includes the trailing spaces. * The length of binary data includes binary zeros. * * @group string_funcs * @since 3.5.0 */ def char_length(str: Column): Column = call_function("char_length", str) /** * Returns the character length of string data or number of bytes of binary data. * The length of string data includes the trailing spaces. * The length of binary data includes binary zeros. * * @group string_funcs * @since 3.5.0 */ def character_length(str: Column): Column = call_function("character_length", str) /** * Returns the ASCII character having the binary equivalent to `n`. * If n is larger than 256 the result is equivalent to chr(n % 256) * * @group string_funcs * @since 3.5.0 */ def chr(n: Column): Column = withExpr { Chr(n.expr) } /** * Returns a boolean. The value is True if right is found inside left. * Returns NULL if either input expression is NULL. Otherwise, returns False. * Both left or right must be of STRING or BINARY type. * * @group string_funcs * @since 3.5.0 */ def contains(left: Column, right: Column): Column = call_function("contains", left, right) /** * Returns the `n`-th input, e.g., returns `input2` when `n` is 2. * The function returns NULL if the index exceeds the length of the array * and `spark.sql.ansi.enabled` is set to false. If `spark.sql.ansi.enabled` is set to true, * it throws ArrayIndexOutOfBoundsException for invalid indices. * * @group string_funcs * @since 3.5.0 */ @scala.annotation.varargs def elt(inputs: Column*): Column = withExpr { Elt(inputs.map(_.expr)) } /** * Returns the index (1-based) of the given string (`str`) in the comma-delimited * list (`strArray`). Returns 0, if the string was not found or if the given string (`str`) * contains a comma. * * @group string_funcs * @since 3.5.0 */ def find_in_set(str: Column, strArray: Column): Column = withExpr { FindInSet(str.expr, strArray.expr) } /** * Returns true if str matches `pattern` with `escapeChar`, null if any arguments are null, * false otherwise. * * @group string_funcs * @since 3.5.0 */ def like(str: Column, pattern: Column, escapeChar: Column): Column = withExpr { escapeChar.expr match { case StringLiteral(v) if v.length == 1 => Like(str.expr, pattern.expr, v.charAt(0)) case _ => throw QueryCompilationErrors.invalidEscapeChar(escapeChar.expr) } } /** * Returns true if str matches `pattern` with `escapeChar`('\'), null if any arguments are null, * false otherwise. * * @group string_funcs * @since 3.5.0 */ def like(str: Column, pattern: Column): Column = withExpr { new Like(str.expr, pattern.expr) } /** * Returns true if str matches `pattern` with `escapeChar` case-insensitively, null if any * arguments are null, false otherwise. * * @group string_funcs * @since 3.5.0 */ def ilike(str: Column, pattern: Column, escapeChar: Column): Column = withExpr { escapeChar.expr match { case StringLiteral(v) if v.length == 1 => ILike(str.expr, pattern.expr, v.charAt(0)) case _ => throw QueryCompilationErrors.invalidEscapeChar(escapeChar.expr) } } /** * Returns true if str matches `pattern` with `escapeChar`('\') case-insensitively, null if any * arguments are null, false otherwise. * * @group string_funcs * @since 3.5.0 */ def ilike(str: Column, pattern: Column): Column = withExpr { new ILike(str.expr, pattern.expr) } /** * Returns `str` with all characters changed to lowercase. * * @group string_funcs * @since 3.5.0 */ def lcase(str: Column): Column = call_function("lcase", str) /** * Returns `str` with all characters changed to uppercase. * * @group string_funcs * @since 3.5.0 */ def ucase(str: Column): Column = call_function("ucase", str) /** * Returns the leftmost `len`(`len` can be string type) characters from the string `str`, * if `len` is less or equal than 0 the result is an empty string. * * @group string_funcs * @since 3.5.0 */ def left(str: Column, len: Column): Column = withExpr { Left(str.expr, len.expr) } /** * Returns the rightmost `len`(`len` can be string type) characters from the string `str`, * if `len` is less or equal than 0 the result is an empty string. * * @group string_funcs * @since 3.5.0 */ def right(str: Column, len: Column): Column = withExpr { Right(str.expr, len.expr) } ////////////////////////////////////////////////////////////////////////////////////////////// // DateTime functions ////////////////////////////////////////////////////////////////////////////////////////////// /** * Returns the date that is `numMonths` after `startDate`. * * @param startDate A date, timestamp or string. If a string, the data must be in a format that * can be cast to a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS` * @param numMonths The number of months to add to `startDate`, can be negative to subtract months * @return A date, or null if `startDate` was a string that could not be cast to a date * @group datetime_funcs * @since 1.5.0 */ def add_months(startDate: Column, numMonths: Int): Column = add_months(startDate, lit(numMonths)) /** * Returns the date that is `numMonths` after `startDate`. * * @param startDate A date, timestamp or string. If a string, the data must be in a format that * can be cast to a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS` * @param numMonths A column of the number of months to add to `startDate`, can be negative to * subtract months * @return A date, or null if `startDate` was a string that could not be cast to a date * @group datetime_funcs * @since 3.0.0 */ def add_months(startDate: Column, numMonths: Column): Column = withExpr { AddMonths(startDate.expr, numMonths.expr) } /** * Returns the current date at the start of query evaluation as a date column. * All calls of current_date within the same query return the same value. * * @group datetime_funcs * @since 3.5.0 */ def curdate(): Column = call_function("curdate") /** * Returns the current date at the start of query evaluation as a date column. * All calls of current_date within the same query return the same value. * * @group datetime_funcs * @since 1.5.0 */ def current_date(): Column = withExpr { CurrentDate() } /** * Returns the current session local timezone. * * @group datetime_funcs * @since 3.5.0 */ def current_timezone(): Column = withExpr { CurrentTimeZone() } /** * Returns the current timestamp at the start of query evaluation as a timestamp column. * All calls of current_timestamp within the same query return the same value. * * @group datetime_funcs * @since 1.5.0 */ def current_timestamp(): Column = withExpr { CurrentTimestamp() } /** * Returns the current timestamp at the start of query evaluation. * * @group datetime_funcs * @since 3.5.0 */ def now(): Column = withExpr { Now() } /** * Returns the current timestamp without time zone at the start of query evaluation * as a timestamp without time zone column. * All calls of localtimestamp within the same query return the same value. * * @group datetime_funcs * @since 3.3.0 */ def localtimestamp(): Column = withExpr { LocalTimestamp() } /** * Converts a date/timestamp/string to a value of string in the format specified by the date * format given by the second argument. * * See * Datetime Patterns * for valid date and time format patterns * * @param dateExpr A date, timestamp or string. If a string, the data must be in a format that * can be cast to a timestamp, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS` * @param format A pattern `dd.MM.yyyy` would return a string like `18.03.1993` * @return A string, or null if `dateExpr` was a string that could not be cast to a timestamp * @note Use specialized functions like [[year]] whenever possible as they benefit from a * specialized implementation. * @throws IllegalArgumentException if the `format` pattern is invalid * @group datetime_funcs * @since 1.5.0 */ def date_format(dateExpr: Column, format: String): Column = withExpr { DateFormatClass(dateExpr.expr, Literal(format)) } /** * Returns the date that is `days` days after `start` * * @param start A date, timestamp or string. If a string, the data must be in a format that * can be cast to a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS` * @param days The number of days to add to `start`, can be negative to subtract days * @return A date, or null if `start` was a string that could not be cast to a date * @group datetime_funcs * @since 1.5.0 */ def date_add(start: Column, days: Int): Column = date_add(start, lit(days)) /** * Returns the date that is `days` days after `start` * * @param start A date, timestamp or string. If a string, the data must be in a format that * can be cast to a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS` * @param days A column of the number of days to add to `start`, can be negative to subtract days * @return A date, or null if `start` was a string that could not be cast to a date * @group datetime_funcs * @since 3.0.0 */ def date_add(start: Column, days: Column): Column = withExpr { DateAdd(start.expr, days.expr) } /** * Returns the date that is `days` days after `start` * * @param start A date, timestamp or string. If a string, the data must be in a format that * can be cast to a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS` * @param days A column of the number of days to add to `start`, can be negative to subtract days * @return A date, or null if `start` was a string that could not be cast to a date * @group datetime_funcs * @since 3.5.0 */ def dateadd(start: Column, days: Column): Column = call_function("dateadd", start, days) /** * Returns the date that is `days` days before `start` * * @param start A date, timestamp or string. If a string, the data must be in a format that * can be cast to a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS` * @param days The number of days to subtract from `start`, can be negative to add days * @return A date, or null if `start` was a string that could not be cast to a date * @group datetime_funcs * @since 1.5.0 */ def date_sub(start: Column, days: Int): Column = date_sub(start, lit(days)) /** * Returns the date that is `days` days before `start` * * @param start A date, timestamp or string. If a string, the data must be in a format that * can be cast to a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS` * @param days A column of the number of days to subtract from `start`, can be negative to add * days * @return A date, or null if `start` was a string that could not be cast to a date * @group datetime_funcs * @since 3.0.0 */ def date_sub(start: Column, days: Column): Column = withExpr { DateSub(start.expr, days.expr) } /** * Returns the number of days from `start` to `end`. * * Only considers the date part of the input. For example: * {{{ * dateddiff("2018-01-10 00:00:00", "2018-01-09 23:59:59") * // returns 1 * }}} * * @param end A date, timestamp or string. If a string, the data must be in a format that * can be cast to a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS` * @param start A date, timestamp or string. If a string, the data must be in a format that * can be cast to a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS` * @return An integer, or null if either `end` or `start` were strings that could not be cast to * a date. Negative if `end` is before `start` * @group datetime_funcs * @since 1.5.0 */ def datediff(end: Column, start: Column): Column = withExpr { DateDiff(end.expr, start.expr) } /** * Returns the number of days from `start` to `end`. * * Only considers the date part of the input. For example: * {{{ * dateddiff("2018-01-10 00:00:00", "2018-01-09 23:59:59") * // returns 1 * }}} * * @param end A date, timestamp or string. If a string, the data must be in a format that * can be cast to a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS` * @param start A date, timestamp or string. If a string, the data must be in a format that * can be cast to a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS` * @return An integer, or null if either `end` or `start` were strings that could not be cast to * a date. Negative if `end` is before `start` * @group datetime_funcs * @since 3.5.0 */ def date_diff(end: Column, start: Column): Column = call_function("date_diff", end, start) /** * Create date from the number of `days` since 1970-01-01. * * @group datetime_funcs * @since 3.5.0 */ def date_from_unix_date(days: Column): Column = withExpr { DateFromUnixDate(days.expr) } /** * Extracts the year as an integer from a given date/timestamp/string. * @return An integer, or null if the input was a string that could not be cast to a date * @group datetime_funcs * @since 1.5.0 */ def year(e: Column): Column = withExpr { Year(e.expr) } /** * Extracts the quarter as an integer from a given date/timestamp/string. * @return An integer, or null if the input was a string that could not be cast to a date * @group datetime_funcs * @since 1.5.0 */ def quarter(e: Column): Column = withExpr { Quarter(e.expr) } /** * Extracts the month as an integer from a given date/timestamp/string. * @return An integer, or null if the input was a string that could not be cast to a date * @group datetime_funcs * @since 1.5.0 */ def month(e: Column): Column = withExpr { Month(e.expr) } /** * Extracts the day of the week as an integer from a given date/timestamp/string. * Ranges from 1 for a Sunday through to 7 for a Saturday * @return An integer, or null if the input was a string that could not be cast to a date * @group datetime_funcs * @since 2.3.0 */ def dayofweek(e: Column): Column = withExpr { DayOfWeek(e.expr) } /** * Extracts the day of the month as an integer from a given date/timestamp/string. * @return An integer, or null if the input was a string that could not be cast to a date * @group datetime_funcs * @since 1.5.0 */ def dayofmonth(e: Column): Column = withExpr { DayOfMonth(e.expr) } /** * Extracts the day of the month as an integer from a given date/timestamp/string. * @return An integer, or null if the input was a string that could not be cast to a date * @group datetime_funcs * @since 3.5.0 */ def day(e: Column): Column = call_function("day", e) /** * Extracts the day of the year as an integer from a given date/timestamp/string. * @return An integer, or null if the input was a string that could not be cast to a date * @group datetime_funcs * @since 1.5.0 */ def dayofyear(e: Column): Column = withExpr { DayOfYear(e.expr) } /** * Extracts the hours as an integer from a given date/timestamp/string. * @return An integer, or null if the input was a string that could not be cast to a date * @group datetime_funcs * @since 1.5.0 */ def hour(e: Column): Column = withExpr { Hour(e.expr) } /** * Extracts a part of the date/timestamp or interval source. * * @param field selects which part of the source should be extracted. * @param source a date/timestamp or interval column from where `field` should be extracted. * @return a part of the date/timestamp or interval source * @group datetime_funcs * @since 3.5.0 */ def extract(field: Column, source: Column): Column = call_function("extract", field, source) /** * Extracts a part of the date/timestamp or interval source. * * @param field selects which part of the source should be extracted, and supported string values * are as same as the fields of the equivalent function `extract`. * @param source a date/timestamp or interval column from where `field` should be extracted. * @return a part of the date/timestamp or interval source * @group datetime_funcs * @since 3.5.0 */ def date_part(field: Column, source: Column): Column = call_function("date_part", field, source) /** * Extracts a part of the date/timestamp or interval source. * * @param field selects which part of the source should be extracted, and supported string values * are as same as the fields of the equivalent function `EXTRACT`. * @param source a date/timestamp or interval column from where `field` should be extracted. * @return a part of the date/timestamp or interval source * @group datetime_funcs * @since 3.5.0 */ def datepart(field: Column, source: Column): Column = call_function("datepart", field, source) /** * Returns the last day of the month which the given date belongs to. * For example, input "2015-07-27" returns "2015-07-31" since July 31 is the last day of the * month in July 2015. * * @param e A date, timestamp or string. If a string, the data must be in a format that can be * cast to a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS` * @return A date, or null if the input was a string that could not be cast to a date * @group datetime_funcs * @since 1.5.0 */ def last_day(e: Column): Column = withExpr { LastDay(e.expr) } /** * Extracts the minutes as an integer from a given date/timestamp/string. * @return An integer, or null if the input was a string that could not be cast to a date * @group datetime_funcs * @since 1.5.0 */ def minute(e: Column): Column = withExpr { Minute(e.expr) } /** * Returns the day of the week for date/timestamp (0 = Monday, 1 = Tuesday, ..., 6 = Sunday). * * @group datetime_funcs * @since 3.5.0 */ def weekday(e: Column): Column = withExpr { WeekDay(e.expr) } /** * @return A date created from year, month and day fields. * @group datetime_funcs * @since 3.3.0 */ def make_date(year: Column, month: Column, day: Column): Column = withExpr { MakeDate(year.expr, month.expr, day.expr) } /** * Returns number of months between dates `start` and `end`. * * A whole number is returned if both inputs have the same day of month or both are the last day * of their respective months. Otherwise, the difference is calculated assuming 31 days per month. * * For example: * {{{ * months_between("2017-11-14", "2017-07-14") // returns 4.0 * months_between("2017-01-01", "2017-01-10") // returns 0.29032258 * months_between("2017-06-01", "2017-06-16 12:00:00") // returns -0.5 * }}} * * @param end A date, timestamp or string. If a string, the data must be in a format that can * be cast to a timestamp, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS` * @param start A date, timestamp or string. If a string, the data must be in a format that can * cast to a timestamp, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS` * @return A double, or null if either `end` or `start` were strings that could not be cast to a * timestamp. Negative if `end` is before `start` * @group datetime_funcs * @since 1.5.0 */ def months_between(end: Column, start: Column): Column = withExpr { new MonthsBetween(end.expr, start.expr) } /** * Returns number of months between dates `end` and `start`. If `roundOff` is set to true, the * result is rounded off to 8 digits; it is not rounded otherwise. * @group datetime_funcs * @since 2.4.0 */ def months_between(end: Column, start: Column, roundOff: Boolean): Column = withExpr { MonthsBetween(end.expr, start.expr, lit(roundOff).expr) } /** * Returns the first date which is later than the value of the `date` column that is on the * specified day of the week. * * For example, `next_day('2015-07-27', "Sunday")` returns 2015-08-02 because that is the first * Sunday after 2015-07-27. * * @param date A date, timestamp or string. If a string, the data must be in a format that * can be cast to a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS` * @param dayOfWeek Case insensitive, and accepts: "Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun" * @return A date, or null if `date` was a string that could not be cast to a date or if * `dayOfWeek` was an invalid value * @group datetime_funcs * @since 1.5.0 */ def next_day(date: Column, dayOfWeek: String): Column = next_day(date, lit(dayOfWeek)) /** * Returns the first date which is later than the value of the `date` column that is on the * specified day of the week. * * For example, `next_day('2015-07-27', "Sunday")` returns 2015-08-02 because that is the first * Sunday after 2015-07-27. * * @param date A date, timestamp or string. If a string, the data must be in a format that * can be cast to a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS` * @param dayOfWeek A column of the day of week. Case insensitive, and accepts: "Mon", "Tue", * "Wed", "Thu", "Fri", "Sat", "Sun" * @return A date, or null if `date` was a string that could not be cast to a date or if * `dayOfWeek` was an invalid value * @group datetime_funcs * @since 3.2.0 */ def next_day(date: Column, dayOfWeek: Column): Column = withExpr { NextDay(date.expr, dayOfWeek.expr) } /** * Extracts the seconds as an integer from a given date/timestamp/string. * @return An integer, or null if the input was a string that could not be cast to a timestamp * @group datetime_funcs * @since 1.5.0 */ def second(e: Column): Column = withExpr { Second(e.expr) } /** * Extracts the week number as an integer from a given date/timestamp/string. * * A week is considered to start on a Monday and week 1 is the first week with more than 3 days, * as defined by ISO 8601 * * @return An integer, or null if the input was a string that could not be cast to a date * @group datetime_funcs * @since 1.5.0 */ def weekofyear(e: Column): Column = withExpr { WeekOfYear(e.expr) } /** * Converts the number of seconds from unix epoch (1970-01-01 00:00:00 UTC) to a string * representing the timestamp of that moment in the current system time zone in the * yyyy-MM-dd HH:mm:ss format. * * @param ut A number of a type that is castable to a long, such as string or integer. Can be * negative for timestamps before the unix epoch * @return A string, or null if the input was a string that could not be cast to a long * @group datetime_funcs * @since 1.5.0 */ def from_unixtime(ut: Column): Column = withExpr { FromUnixTime(ut.expr, Literal(TimestampFormatter.defaultPattern)) } /** * Converts the number of seconds from unix epoch (1970-01-01 00:00:00 UTC) to a string * representing the timestamp of that moment in the current system time zone in the given * format. * * See * Datetime Patterns * for valid date and time format patterns * * @param ut A number of a type that is castable to a long, such as string or integer. Can be * negative for timestamps before the unix epoch * @param f A date time pattern that the input will be formatted to * @return A string, or null if `ut` was a string that could not be cast to a long or `f` was * an invalid date time pattern * @group datetime_funcs * @since 1.5.0 */ def from_unixtime(ut: Column, f: String): Column = withExpr { FromUnixTime(ut.expr, Literal(f)) } /** * Returns the current Unix timestamp (in seconds) as a long. * * @note All calls of `unix_timestamp` within the same query return the same value * (i.e. the current timestamp is calculated at the start of query evaluation). * * @group datetime_funcs * @since 1.5.0 */ def unix_timestamp(): Column = withExpr { UnixTimestamp(CurrentTimestamp(), Literal(TimestampFormatter.defaultPattern)) } /** * Converts time string in format yyyy-MM-dd HH:mm:ss to Unix timestamp (in seconds), * using the default timezone and the default locale. * * @param s A date, timestamp or string. If a string, the data must be in the * `yyyy-MM-dd HH:mm:ss` format * @return A long, or null if the input was a string not of the correct format * @group datetime_funcs * @since 1.5.0 */ def unix_timestamp(s: Column): Column = withExpr { UnixTimestamp(s.expr, Literal(TimestampFormatter.defaultPattern)) } /** * Converts time string with given pattern to Unix timestamp (in seconds). * * See * Datetime Patterns * for valid date and time format patterns * * @param s A date, timestamp or string. If a string, the data must be in a format that can be * cast to a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS` * @param p A date time pattern detailing the format of `s` when `s` is a string * @return A long, or null if `s` was a string that could not be cast to a date or `p` was * an invalid format * @group datetime_funcs * @since 1.5.0 */ def unix_timestamp(s: Column, p: String): Column = withExpr { UnixTimestamp(s.expr, Literal(p)) } /** * Converts to a timestamp by casting rules to `TimestampType`. * * @param s A date, timestamp or string. If a string, the data must be in a format that can be * cast to a timestamp, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS` * @return A timestamp, or null if the input was a string that could not be cast to a timestamp * @group datetime_funcs * @since 2.2.0 */ def to_timestamp(s: Column): Column = withExpr { new ParseToTimestamp(s.expr) } /** * Converts time string with the given pattern to timestamp. * * See * Datetime Patterns * for valid date and time format patterns * * @param s A date, timestamp or string. If a string, the data must be in a format that can be * cast to a timestamp, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS` * @param fmt A date time pattern detailing the format of `s` when `s` is a string * @return A timestamp, or null if `s` was a string that could not be cast to a timestamp or * `fmt` was an invalid format * @group datetime_funcs * @since 2.2.0 */ def to_timestamp(s: Column, fmt: String): Column = withExpr { new ParseToTimestamp(s.expr, Literal(fmt)) } /** * Parses the `s` with the `format` to a timestamp. The function always returns null on an * invalid input with`/`without ANSI SQL mode enabled. The result data type is consistent with * the value of configuration `spark.sql.timestampType`. * * @group datetime_funcs * @since 3.5.0 */ def try_to_timestamp(s: Column, format: Column): Column = call_function("try_to_timestamp", s, format) /** * Parses the `s` to a timestamp. The function always returns null on an invalid * input with`/`without ANSI SQL mode enabled. It follows casting rules to a timestamp. The * result data type is consistent with the value of configuration `spark.sql.timestampType`. * * @group datetime_funcs * @since 3.5.0 */ def try_to_timestamp(s: Column): Column = call_function("try_to_timestamp", s) /** * Converts the column into `DateType` by casting rules to `DateType`. * * @group datetime_funcs * @since 1.5.0 */ def to_date(e: Column): Column = withExpr { new ParseToDate(e.expr) } /** * Converts the column into a `DateType` with a specified format * * See * Datetime Patterns * for valid date and time format patterns * * @param e A date, timestamp or string. If a string, the data must be in a format that can be * cast to a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS` * @param fmt A date time pattern detailing the format of `e` when `e`is a string * @return A date, or null if `e` was a string that could not be cast to a date or `fmt` was an * invalid format * @group datetime_funcs * @since 2.2.0 */ def to_date(e: Column, fmt: String): Column = withExpr { new ParseToDate(e.expr, Literal(fmt)) } /** * Returns the number of days since 1970-01-01. * * @group datetime_funcs * @since 3.5.0 */ def unix_date(e: Column): Column = withExpr { UnixDate(e.expr) } /** * Returns the number of microseconds since 1970-01-01 00:00:00 UTC. * * @group datetime_funcs * @since 3.5.0 */ def unix_micros(e: Column): Column = withExpr { UnixMicros(e.expr) } /** * Returns the number of milliseconds since 1970-01-01 00:00:00 UTC. * Truncates higher levels of precision. * * @group datetime_funcs * @since 3.5.0 */ def unix_millis(e: Column): Column = withExpr { UnixMillis(e.expr) } /** * Returns the number of seconds since 1970-01-01 00:00:00 UTC. * Truncates higher levels of precision. * * @group datetime_funcs * @since 3.5.0 */ def unix_seconds(e: Column): Column = withExpr { UnixSeconds(e.expr) } /** * Returns date truncated to the unit specified by the format. * * For example, `trunc("2018-11-19 12:01:19", "year")` returns 2018-01-01 * * @param date A date, timestamp or string. If a string, the data must be in a format that can be * cast to a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS` * @param format: 'year', 'yyyy', 'yy' to truncate by year, * or 'month', 'mon', 'mm' to truncate by month * Other options are: 'week', 'quarter' * * @return A date, or null if `date` was a string that could not be cast to a date or `format` * was an invalid value * @group datetime_funcs * @since 1.5.0 */ def trunc(date: Column, format: String): Column = withExpr { TruncDate(date.expr, Literal(format)) } /** * Returns timestamp truncated to the unit specified by the format. * * For example, `date_trunc("year", "2018-11-19 12:01:19")` returns 2018-01-01 00:00:00 * * @param format: 'year', 'yyyy', 'yy' to truncate by year, * 'month', 'mon', 'mm' to truncate by month, * 'day', 'dd' to truncate by day, * Other options are: * 'microsecond', 'millisecond', 'second', 'minute', 'hour', 'week', 'quarter' * @param timestamp A date, timestamp or string. If a string, the data must be in a format that * can be cast to a timestamp, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS` * @return A timestamp, or null if `timestamp` was a string that could not be cast to a timestamp * or `format` was an invalid value * @group datetime_funcs * @since 2.3.0 */ def date_trunc(format: String, timestamp: Column): Column = withExpr { TruncTimestamp(Literal(format), timestamp.expr) } /** * Given a timestamp like '2017-07-14 02:40:00.0', interprets it as a time in UTC, and renders * that time as a timestamp in the given time zone. For example, 'GMT+1' would yield * '2017-07-14 03:40:00.0'. * * @param ts A date, timestamp or string. If a string, the data must be in a format that can be * cast to a timestamp, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS` * @param tz A string detailing the time zone ID that the input should be adjusted to. It should * be in the format of either region-based zone IDs or zone offsets. Region IDs must * have the form 'area/city', such as 'America/Los_Angeles'. Zone offsets must be in * the format '(+|-)HH:mm', for example '-08:00' or '+01:00'. Also 'UTC' and 'Z' are * supported as aliases of '+00:00'. Other short names are not recommended to use * because they can be ambiguous. * @return A timestamp, or null if `ts` was a string that could not be cast to a timestamp or * `tz` was an invalid value * @group datetime_funcs * @since 1.5.0 */ def from_utc_timestamp(ts: Column, tz: String): Column = withExpr { FromUTCTimestamp(ts.expr, Literal(tz)) } /** * Given a timestamp like '2017-07-14 02:40:00.0', interprets it as a time in UTC, and renders * that time as a timestamp in the given time zone. For example, 'GMT+1' would yield * '2017-07-14 03:40:00.0'. * @group datetime_funcs * @since 2.4.0 */ def from_utc_timestamp(ts: Column, tz: Column): Column = withExpr { FromUTCTimestamp(ts.expr, tz.expr) } /** * Given a timestamp like '2017-07-14 02:40:00.0', interprets it as a time in the given time * zone, and renders that time as a timestamp in UTC. For example, 'GMT+1' would yield * '2017-07-14 01:40:00.0'. * * @param ts A date, timestamp or string. If a string, the data must be in a format that can be * cast to a timestamp, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS` * @param tz A string detailing the time zone ID that the input should be adjusted to. It should * be in the format of either region-based zone IDs or zone offsets. Region IDs must * have the form 'area/city', such as 'America/Los_Angeles'. Zone offsets must be in * the format '(+|-)HH:mm', for example '-08:00' or '+01:00'. Also 'UTC' and 'Z' are * supported as aliases of '+00:00'. Other short names are not recommended to use * because they can be ambiguous. * @return A timestamp, or null if `ts` was a string that could not be cast to a timestamp or * `tz` was an invalid value * @group datetime_funcs * @since 1.5.0 */ def to_utc_timestamp(ts: Column, tz: String): Column = withExpr { ToUTCTimestamp(ts.expr, Literal(tz)) } /** * Given a timestamp like '2017-07-14 02:40:00.0', interprets it as a time in the given time * zone, and renders that time as a timestamp in UTC. For example, 'GMT+1' would yield * '2017-07-14 01:40:00.0'. * @group datetime_funcs * @since 2.4.0 */ def to_utc_timestamp(ts: Column, tz: Column): Column = withExpr { ToUTCTimestamp(ts.expr, tz.expr) } /** * Bucketize rows into one or more time windows given a timestamp specifying column. Window * starts are inclusive but the window ends are exclusive, e.g. 12:05 will be in the window * [12:05,12:10) but not in [12:00,12:05). Windows can support microsecond precision. Windows in * the order of months are not supported. The following example takes the average stock price for * a one minute window every 10 seconds starting 5 seconds after the hour: * * {{{ * val df = ... // schema => timestamp: TimestampType, stockId: StringType, price: DoubleType * df.groupBy(window($"timestamp", "1 minute", "10 seconds", "5 seconds"), $"stockId") * .agg(mean("price")) * }}} * * The windows will look like: * * {{{ * 09:00:05-09:01:05 * 09:00:15-09:01:15 * 09:00:25-09:01:25 ... * }}} * * For a streaming query, you may use the function `current_timestamp` to generate windows on * processing time. * * @param timeColumn The column or the expression to use as the timestamp for windowing by time. * The time column must be of TimestampType or TimestampNTZType. * @param windowDuration A string specifying the width of the window, e.g. `10 minutes`, * `1 second`. Check `org.apache.spark.unsafe.types.CalendarInterval` for * valid duration identifiers. Note that the duration is a fixed length of * time, and does not vary over time according to a calendar. For example, * `1 day` always means 86,400,000 milliseconds, not a calendar day. * @param slideDuration A string specifying the sliding interval of the window, e.g. `1 minute`. * A new window will be generated every `slideDuration`. Must be less than * or equal to the `windowDuration`. Check * `org.apache.spark.unsafe.types.CalendarInterval` for valid duration * identifiers. This duration is likewise absolute, and does not vary * according to a calendar. * @param startTime The offset with respect to 1970-01-01 00:00:00 UTC with which to start * window intervals. For example, in order to have hourly tumbling windows that * start 15 minutes past the hour, e.g. 12:15-13:15, 13:15-14:15... provide * `startTime` as `15 minutes`. * * @group datetime_funcs * @since 2.0.0 */ def window( timeColumn: Column, windowDuration: String, slideDuration: String, startTime: String): Column = { withExpr { TimeWindow(timeColumn.expr, windowDuration, slideDuration, startTime) }.as("window") } /** * Bucketize rows into one or more time windows given a timestamp specifying column. Window * starts are inclusive but the window ends are exclusive, e.g. 12:05 will be in the window * [12:05,12:10) but not in [12:00,12:05). Windows can support microsecond precision. Windows in * the order of months are not supported. The windows start beginning at 1970-01-01 00:00:00 UTC. * The following example takes the average stock price for a one minute window every 10 seconds: * * {{{ * val df = ... // schema => timestamp: TimestampType, stockId: StringType, price: DoubleType * df.groupBy(window($"timestamp", "1 minute", "10 seconds"), $"stockId") * .agg(mean("price")) * }}} * * The windows will look like: * * {{{ * 09:00:00-09:01:00 * 09:00:10-09:01:10 * 09:00:20-09:01:20 ... * }}} * * For a streaming query, you may use the function `current_timestamp` to generate windows on * processing time. * * @param timeColumn The column or the expression to use as the timestamp for windowing by time. * The time column must be of TimestampType or TimestampNTZType. * @param windowDuration A string specifying the width of the window, e.g. `10 minutes`, * `1 second`. Check `org.apache.spark.unsafe.types.CalendarInterval` for * valid duration identifiers. Note that the duration is a fixed length of * time, and does not vary over time according to a calendar. For example, * `1 day` always means 86,400,000 milliseconds, not a calendar day. * @param slideDuration A string specifying the sliding interval of the window, e.g. `1 minute`. * A new window will be generated every `slideDuration`. Must be less than * or equal to the `windowDuration`. Check * `org.apache.spark.unsafe.types.CalendarInterval` for valid duration * identifiers. This duration is likewise absolute, and does not vary * according to a calendar. * * @group datetime_funcs * @since 2.0.0 */ def window(timeColumn: Column, windowDuration: String, slideDuration: String): Column = { window(timeColumn, windowDuration, slideDuration, "0 second") } /** * Generates tumbling time windows given a timestamp specifying column. Window * starts are inclusive but the window ends are exclusive, e.g. 12:05 will be in the window * [12:05,12:10) but not in [12:00,12:05). Windows can support microsecond precision. Windows in * the order of months are not supported. The windows start beginning at 1970-01-01 00:00:00 UTC. * The following example takes the average stock price for a one minute tumbling window: * * {{{ * val df = ... // schema => timestamp: TimestampType, stockId: StringType, price: DoubleType * df.groupBy(window($"timestamp", "1 minute"), $"stockId") * .agg(mean("price")) * }}} * * The windows will look like: * * {{{ * 09:00:00-09:01:00 * 09:01:00-09:02:00 * 09:02:00-09:03:00 ... * }}} * * For a streaming query, you may use the function `current_timestamp` to generate windows on * processing time. * * @param timeColumn The column or the expression to use as the timestamp for windowing by time. * The time column must be of TimestampType or TimestampNTZType. * @param windowDuration A string specifying the width of the window, e.g. `10 minutes`, * `1 second`. Check `org.apache.spark.unsafe.types.CalendarInterval` for * valid duration identifiers. * * @group datetime_funcs * @since 2.0.0 */ def window(timeColumn: Column, windowDuration: String): Column = { window(timeColumn, windowDuration, windowDuration, "0 second") } /** * Extracts the event time from the window column. * * The window column is of StructType { start: Timestamp, end: Timestamp } where start is * inclusive and end is exclusive. Since event time can support microsecond precision, * window_time(window) = window.end - 1 microsecond. * * @param windowColumn The window column (typically produced by window aggregation) of type * StructType { start: Timestamp, end: Timestamp } * * @group datetime_funcs * @since 3.4.0 */ def window_time(windowColumn: Column): Column = withExpr { WindowTime(windowColumn.expr) } /** * Generates session window given a timestamp specifying column. * * Session window is one of dynamic windows, which means the length of window is varying * according to the given inputs. The length of session window is defined as "the timestamp * of latest input of the session + gap duration", so when the new inputs are bound to the * current session window, the end time of session window can be expanded according to the new * inputs. * * Windows can support microsecond precision. gapDuration in the order of months are not * supported. * * For a streaming query, you may use the function `current_timestamp` to generate windows on * processing time. * * @param timeColumn The column or the expression to use as the timestamp for windowing by time. * The time column must be of TimestampType or TimestampNTZType. * @param gapDuration A string specifying the timeout of the session, e.g. `10 minutes`, * `1 second`. Check `org.apache.spark.unsafe.types.CalendarInterval` for * valid duration identifiers. * * @group datetime_funcs * @since 3.2.0 */ def session_window(timeColumn: Column, gapDuration: String): Column = { withExpr { SessionWindow(timeColumn.expr, gapDuration) }.as("session_window") } /** * Generates session window given a timestamp specifying column. * * Session window is one of dynamic windows, which means the length of window is varying * according to the given inputs. For static gap duration, the length of session window * is defined as "the timestamp of latest input of the session + gap duration", so when * the new inputs are bound to the current session window, the end time of session window * can be expanded according to the new inputs. * * Besides a static gap duration value, users can also provide an expression to specify * gap duration dynamically based on the input row. With dynamic gap duration, the closing * of a session window does not depend on the latest input anymore. A session window's range * is the union of all events' ranges which are determined by event start time and evaluated * gap duration during the query execution. Note that the rows with negative or zero gap * duration will be filtered out from the aggregation. * * Windows can support microsecond precision. gapDuration in the order of months are not * supported. * * For a streaming query, you may use the function `current_timestamp` to generate windows on * processing time. * * @param timeColumn The column or the expression to use as the timestamp for windowing by time. * The time column must be of TimestampType or TimestampNTZType. * @param gapDuration A column specifying the timeout of the session. It could be static value, * e.g. `10 minutes`, `1 second`, or an expression/UDF that specifies gap * duration dynamically based on the input row. * * @group datetime_funcs * @since 3.2.0 */ def session_window(timeColumn: Column, gapDuration: Column): Column = { withExpr { SessionWindow(timeColumn.expr, gapDuration.expr) }.as("session_window") } /** * Converts the number of seconds from the Unix epoch (1970-01-01T00:00:00Z) * to a timestamp. * @group datetime_funcs * @since 3.1.0 */ def timestamp_seconds(e: Column): Column = withExpr { SecondsToTimestamp(e.expr) } /** * Creates timestamp from the number of milliseconds since UTC epoch. * * @group datetime_funcs * @since 3.5.0 */ def timestamp_millis(e: Column): Column = withExpr { MillisToTimestamp(e.expr) } /** * Creates timestamp from the number of microseconds since UTC epoch. * * @group datetime_funcs * @since 3.5.0 */ def timestamp_micros(e: Column): Column = withExpr { MicrosToTimestamp(e.expr) } /** * Parses the `timestamp` expression with the `format` expression * to a timestamp without time zone. Returns null with invalid input. * * @group datetime_funcs * @since 3.5.0 */ def to_timestamp_ltz(timestamp: Column, format: Column): Column = call_function("to_timestamp_ltz", timestamp, format) /** * Parses the `timestamp` expression with the default format to a timestamp without time zone. * The default format follows casting rules to a timestamp. Returns null with invalid input. * * @group datetime_funcs * @since 3.5.0 */ def to_timestamp_ltz(timestamp: Column): Column = call_function("to_timestamp_ltz", timestamp) /** * Parses the `timestamp_str` expression with the `format` expression * to a timestamp without time zone. Returns null with invalid input. * * @group datetime_funcs * @since 3.5.0 */ def to_timestamp_ntz(timestamp: Column, format: Column): Column = call_function("to_timestamp_ntz", timestamp, format) /** * Parses the `timestamp` expression with the default format to a timestamp without time zone. * The default format follows casting rules to a timestamp. Returns null with invalid input. * * @group datetime_funcs * @since 3.5.0 */ def to_timestamp_ntz(timestamp: Column): Column = call_function("to_timestamp_ntz", timestamp) /** * Returns the UNIX timestamp of the given time. * * @group datetime_funcs * @since 3.5.0 */ def to_unix_timestamp(e: Column, format: Column): Column = withExpr { new ToUnixTimestamp(e.expr, format.expr) } /** * Returns the UNIX timestamp of the given time. * * @group datetime_funcs * @since 3.5.0 */ def to_unix_timestamp(e: Column): Column = withExpr { new ToUnixTimestamp(e.expr) } ////////////////////////////////////////////////////////////////////////////////////////////// // Collection functions ////////////////////////////////////////////////////////////////////////////////////////////// /** * Returns null if the array is null, true if the array contains `value`, and false otherwise. * @group collection_funcs * @since 1.5.0 */ def array_contains(column: Column, value: Any): Column = withExpr { ArrayContains(column.expr, lit(value).expr) } /** * Returns an ARRAY containing all elements from the source ARRAY as well as the new element. * The new element/column is located at end of the ARRAY. * * @group collection_funcs * @since 3.4.0 */ def array_append(column: Column, element: Any): Column = withExpr { ArrayAppend(column.expr, lit(element).expr) } /** * Returns `true` if `a1` and `a2` have at least one non-null element in common. If not and both * the arrays are non-empty and any of them contains a `null`, it returns `null`. It returns * `false` otherwise. * @group collection_funcs * @since 2.4.0 */ def arrays_overlap(a1: Column, a2: Column): Column = withExpr { ArraysOverlap(a1.expr, a2.expr) } /** * Returns an array containing all the elements in `x` from index `start` (or starting from the * end if `start` is negative) with the specified `length`. * * @param x the array column to be sliced * @param start the starting index * @param length the length of the slice * * @group collection_funcs * @since 2.4.0 */ def slice(x: Column, start: Int, length: Int): Column = slice(x, lit(start), lit(length)) /** * Returns an array containing all the elements in `x` from index `start` (or starting from the * end if `start` is negative) with the specified `length`. * * @param x the array column to be sliced * @param start the starting index * @param length the length of the slice * * @group collection_funcs * @since 3.1.0 */ def slice(x: Column, start: Column, length: Column): Column = withExpr { Slice(x.expr, start.expr, length.expr) } /** * Concatenates the elements of `column` using the `delimiter`. Null values are replaced with * `nullReplacement`. * @group collection_funcs * @since 2.4.0 */ def array_join(column: Column, delimiter: String, nullReplacement: String): Column = withExpr { ArrayJoin(column.expr, Literal(delimiter), Some(Literal(nullReplacement))) } /** * Concatenates the elements of `column` using the `delimiter`. * @group collection_funcs * @since 2.4.0 */ def array_join(column: Column, delimiter: String): Column = withExpr { ArrayJoin(column.expr, Literal(delimiter), None) } /** * Concatenates multiple input columns together into a single column. * The function works with strings, binary and compatible array columns. * * @note Returns null if any of the input columns are null. * * @group collection_funcs * @since 1.5.0 */ @scala.annotation.varargs def concat(exprs: Column*): Column = withExpr { Concat(exprs.map(_.expr)) } /** * Locates the position of the first occurrence of the value in the given array as long. * Returns null if either of the arguments are null. * * @note The position is not zero based, but 1 based index. Returns 0 if value * could not be found in array. * * @group collection_funcs * @since 2.4.0 */ def array_position(column: Column, value: Any): Column = withExpr { ArrayPosition(column.expr, lit(value).expr) } /** * Returns element of array at given index in value if column is array. Returns value for * the given key in value if column is map. * * @group collection_funcs * @since 2.4.0 */ def element_at(column: Column, value: Any): Column = withExpr { ElementAt(column.expr, lit(value).expr) } /** * (array, index) - Returns element of array at given (1-based) index. If Index is 0, Spark will * throw an error. If index < 0, accesses elements from the last to the first. The function * always returns NULL if the index exceeds the length of the array. * * (map, key) - Returns value for given key. The function always returns NULL if the key is not * contained in the map. * * @group map_funcs * @since 3.5.0 */ def try_element_at(column: Column, value: Column): Column = withExpr { new TryElementAt(column.expr, value.expr) } /** * Returns element of array at given (0-based) index. If the index points * outside of the array boundaries, then this function returns NULL. * * @group collection_funcs * @since 3.4.0 */ def get(column: Column, index: Column): Column = withExpr { new Get(column.expr, index.expr) } /** * Sorts the input array in ascending order. The elements of the input array must be orderable. * NaN is greater than any non-NaN elements for double/float type. * Null elements will be placed at the end of the returned array. * * @group collection_funcs * @since 2.4.0 */ def array_sort(e: Column): Column = withExpr { new ArraySort(e.expr) } /** * Sorts the input array based on the given comparator function. The comparator will take two * arguments representing two elements of the array. It returns a negative integer, 0, or a * positive integer as the first element is less than, equal to, or greater than the second * element. If the comparator function returns null, the function will fail and raise an error. * * @group collection_funcs * @since 3.4.0 */ def array_sort(e: Column, comparator: (Column, Column) => Column): Column = withExpr { new ArraySort(e.expr, createLambda(comparator)) } /** * Remove all elements that equal to element from the given array. * * @group collection_funcs * @since 2.4.0 */ def array_remove(column: Column, element: Any): Column = withExpr { ArrayRemove(column.expr, lit(element).expr) } /** * Remove all null elements from the given array. * * @group collection_funcs * @since 3.4.0 */ def array_compact(column: Column): Column = withExpr { ArrayCompact(column.expr) } /** * Returns an array containing value as well as all elements from array. The new element is * positioned at the beginning of the array. * * @group collection_funcs * @since 3.5.0 */ def array_prepend(column: Column, element: Any): Column = withExpr { ArrayPrepend(column.expr, lit(element).expr) } /** * Removes duplicate values from the array. * @group collection_funcs * @since 2.4.0 */ def array_distinct(e: Column): Column = withExpr { ArrayDistinct(e.expr) } /** * Returns an array of the elements in the intersection of the given two arrays, * without duplicates. * * @group collection_funcs * @since 2.4.0 */ def array_intersect(col1: Column, col2: Column): Column = withExpr { ArrayIntersect(col1.expr, col2.expr) } /** * Adds an item into a given array at a specified position * * @group collection_funcs * @since 3.4.0 */ def array_insert(arr: Column, pos: Column, value: Column): Column = withExpr { new ArrayInsert(arr.expr, pos.expr, value.expr) } /** * Returns an array of the elements in the union of the given two arrays, without duplicates. * * @group collection_funcs * @since 2.4.0 */ def array_union(col1: Column, col2: Column): Column = withExpr { ArrayUnion(col1.expr, col2.expr) } /** * Returns an array of the elements in the first array but not in the second array, * without duplicates. The order of elements in the result is not determined * * @group collection_funcs * @since 2.4.0 */ def array_except(col1: Column, col2: Column): Column = withExpr { ArrayExcept(col1.expr, col2.expr) } private def createLambda(f: Column => Column) = { val x = UnresolvedNamedLambdaVariable(Seq(UnresolvedNamedLambdaVariable.freshVarName("x"))) val function = f(Column(x)).expr LambdaFunction(function, Seq(x)) } private def createLambda(f: (Column, Column) => Column) = { val x = UnresolvedNamedLambdaVariable(Seq(UnresolvedNamedLambdaVariable.freshVarName("x"))) val y = UnresolvedNamedLambdaVariable(Seq(UnresolvedNamedLambdaVariable.freshVarName("y"))) val function = f(Column(x), Column(y)).expr LambdaFunction(function, Seq(x, y)) } private def createLambda(f: (Column, Column, Column) => Column) = { val x = UnresolvedNamedLambdaVariable(Seq(UnresolvedNamedLambdaVariable.freshVarName("x"))) val y = UnresolvedNamedLambdaVariable(Seq(UnresolvedNamedLambdaVariable.freshVarName("y"))) val z = UnresolvedNamedLambdaVariable(Seq(UnresolvedNamedLambdaVariable.freshVarName("z"))) val function = f(Column(x), Column(y), Column(z)).expr LambdaFunction(function, Seq(x, y, z)) } /** * Returns an array of elements after applying a transformation to each element * in the input array. * {{{ * df.select(transform(col("i"), x => x + 1)) * }}} * * @param column the input array column * @param f col => transformed_col, the lambda function to transform the input column * * @group collection_funcs * @since 3.0.0 */ def transform(column: Column, f: Column => Column): Column = withExpr { ArrayTransform(column.expr, createLambda(f)) } /** * Returns an array of elements after applying a transformation to each element * in the input array. * {{{ * df.select(transform(col("i"), (x, i) => x + i)) * }}} * * @param column the input array column * @param f (col, index) => transformed_col, the lambda function to filter the input column * given the index. Indices start at 0. * * @group collection_funcs * @since 3.0.0 */ def transform(column: Column, f: (Column, Column) => Column): Column = withExpr { ArrayTransform(column.expr, createLambda(f)) } /** * Returns whether a predicate holds for one or more elements in the array. * {{{ * df.select(exists(col("i"), _ % 2 === 0)) * }}} * * @param column the input array column * @param f col => predicate, the Boolean predicate to check the input column * * @group collection_funcs * @since 3.0.0 */ def exists(column: Column, f: Column => Column): Column = withExpr { ArrayExists(column.expr, createLambda(f)) } /** * Returns whether a predicate holds for every element in the array. * {{{ * df.select(forall(col("i"), x => x % 2 === 0)) * }}} * * @param column the input array column * @param f col => predicate, the Boolean predicate to check the input column * * @group collection_funcs * @since 3.0.0 */ def forall(column: Column, f: Column => Column): Column = withExpr { ArrayForAll(column.expr, createLambda(f)) } /** * Returns an array of elements for which a predicate holds in a given array. * {{{ * df.select(filter(col("s"), x => x % 2 === 0)) * }}} * * @param column the input array column * @param f col => predicate, the Boolean predicate to filter the input column * * @group collection_funcs * @since 3.0.0 */ def filter(column: Column, f: Column => Column): Column = withExpr { ArrayFilter(column.expr, createLambda(f)) } /** * Returns an array of elements for which a predicate holds in a given array. * {{{ * df.select(filter(col("s"), (x, i) => i % 2 === 0)) * }}} * * @param column the input array column * @param f (col, index) => predicate, the Boolean predicate to filter the input column * given the index. Indices start at 0. * * @group collection_funcs * @since 3.0.0 */ def filter(column: Column, f: (Column, Column) => Column): Column = withExpr { ArrayFilter(column.expr, createLambda(f)) } /** * Applies a binary operator to an initial state and all elements in the array, * and reduces this to a single state. The final state is converted into the final result * by applying a finish function. * {{{ * df.select(aggregate(col("i"), lit(0), (acc, x) => acc + x, _ * 10)) * }}} * * @param expr the input array column * @param initialValue the initial value * @param merge (combined_value, input_value) => combined_value, the merge function to merge * an input value to the combined_value * @param finish combined_value => final_value, the lambda function to convert the combined value * of all inputs to final result * * @group collection_funcs * @since 3.0.0 */ def aggregate( expr: Column, initialValue: Column, merge: (Column, Column) => Column, finish: Column => Column): Column = withExpr { ArrayAggregate( expr.expr, initialValue.expr, createLambda(merge), createLambda(finish) ) } /** * Applies a binary operator to an initial state and all elements in the array, * and reduces this to a single state. * {{{ * df.select(aggregate(col("i"), lit(0), (acc, x) => acc + x)) * }}} * * @param expr the input array column * @param initialValue the initial value * @param merge (combined_value, input_value) => combined_value, the merge function to merge * an input value to the combined_value * @group collection_funcs * @since 3.0.0 */ def aggregate(expr: Column, initialValue: Column, merge: (Column, Column) => Column): Column = aggregate(expr, initialValue, merge, c => c) /** * Applies a binary operator to an initial state and all elements in the array, * and reduces this to a single state. The final state is converted into the final result * by applying a finish function. * {{{ * df.select(aggregate(col("i"), lit(0), (acc, x) => acc + x, _ * 10)) * }}} * * @param expr the input array column * @param initialValue the initial value * @param merge (combined_value, input_value) => combined_value, the merge function to merge * an input value to the combined_value * @param finish combined_value => final_value, the lambda function to convert the combined value * of all inputs to final result * * @group collection_funcs * @since 3.5.0 */ def reduce( expr: Column, initialValue: Column, merge: (Column, Column) => Column, finish: Column => Column): Column = aggregate(expr, initialValue, merge, finish) /** * Applies a binary operator to an initial state and all elements in the array, * and reduces this to a single state. * {{{ * df.select(aggregate(col("i"), lit(0), (acc, x) => acc + x)) * }}} * * @param expr the input array column * @param initialValue the initial value * @param merge (combined_value, input_value) => combined_value, the merge function to merge * an input value to the combined_value * @group collection_funcs * @since 3.5.0 */ def reduce(expr: Column, initialValue: Column, merge: (Column, Column) => Column): Column = aggregate(expr, initialValue, merge, c => c) /** * Merge two given arrays, element-wise, into a single array using a function. * If one array is shorter, nulls are appended at the end to match the length of the longer * array, before applying the function. * {{{ * df.select(zip_with(df1("val1"), df1("val2"), (x, y) => x + y)) * }}} * * @param left the left input array column * @param right the right input array column * @param f (lCol, rCol) => col, the lambda function to merge two input columns into one column * * @group collection_funcs * @since 3.0.0 */ def zip_with(left: Column, right: Column, f: (Column, Column) => Column): Column = withExpr { ZipWith(left.expr, right.expr, createLambda(f)) } /** * Applies a function to every key-value pair in a map and returns * a map with the results of those applications as the new keys for the pairs. * {{{ * df.select(transform_keys(col("i"), (k, v) => k + v)) * }}} * * @param expr the input map column * @param f (key, value) => new_key, the lambda function to transform the key of input map column * * @group collection_funcs * @since 3.0.0 */ def transform_keys(expr: Column, f: (Column, Column) => Column): Column = withExpr { TransformKeys(expr.expr, createLambda(f)) } /** * Applies a function to every key-value pair in a map and returns * a map with the results of those applications as the new values for the pairs. * {{{ * df.select(transform_values(col("i"), (k, v) => k + v)) * }}} * * @param expr the input map column * @param f (key, value) => new_value, the lambda function to transform the value of input map * column * * @group collection_funcs * @since 3.0.0 */ def transform_values(expr: Column, f: (Column, Column) => Column): Column = withExpr { TransformValues(expr.expr, createLambda(f)) } /** * Returns a map whose key-value pairs satisfy a predicate. * {{{ * df.select(map_filter(col("m"), (k, v) => k * 10 === v)) * }}} * * @param expr the input map column * @param f (key, value) => predicate, the Boolean predicate to filter the input map column * * @group collection_funcs * @since 3.0.0 */ def map_filter(expr: Column, f: (Column, Column) => Column): Column = withExpr { MapFilter(expr.expr, createLambda(f)) } /** * Merge two given maps, key-wise into a single map using a function. * {{{ * df.select(map_zip_with(df("m1"), df("m2"), (k, v1, v2) => k === v1 + v2)) * }}} * * @param left the left input map column * @param right the right input map column * @param f (key, value1, value2) => new_value, the lambda function to merge the map values * * @group collection_funcs * @since 3.0.0 */ def map_zip_with( left: Column, right: Column, f: (Column, Column, Column) => Column): Column = withExpr { MapZipWith(left.expr, right.expr, createLambda(f)) } /** * Creates a new row for each element in the given array or map column. * Uses the default column name `col` for elements in the array and * `key` and `value` for elements in the map unless specified otherwise. * * @group collection_funcs * @since 1.3.0 */ def explode(e: Column): Column = withExpr { Explode(e.expr) } /** * Creates a new row for each element in the given array or map column. * Uses the default column name `col` for elements in the array and * `key` and `value` for elements in the map unless specified otherwise. * Unlike explode, if the array/map is null or empty then null is produced. * * @group collection_funcs * @since 2.2.0 */ def explode_outer(e: Column): Column = withExpr { GeneratorOuter(Explode(e.expr)) } /** * Creates a new row for each element with position in the given array or map column. * Uses the default column name `pos` for position, and `col` for elements in the array * and `key` and `value` for elements in the map unless specified otherwise. * * @group collection_funcs * @since 2.1.0 */ def posexplode(e: Column): Column = withExpr { PosExplode(e.expr) } /** * Creates a new row for each element with position in the given array or map column. * Uses the default column name `pos` for position, and `col` for elements in the array * and `key` and `value` for elements in the map unless specified otherwise. * Unlike posexplode, if the array/map is null or empty then the row (null, null) is produced. * * @group collection_funcs * @since 2.2.0 */ def posexplode_outer(e: Column): Column = withExpr { GeneratorOuter(PosExplode(e.expr)) } /** * Creates a new row for each element in the given array of structs. * * @group collection_funcs * @since 3.4.0 */ def inline(e: Column): Column = withExpr { Inline(e.expr) } /** * Creates a new row for each element in the given array of structs. * Unlike inline, if the array is null or empty then null is produced for each nested column. * * @group collection_funcs * @since 3.4.0 */ def inline_outer(e: Column): Column = withExpr { GeneratorOuter(Inline(e.expr)) } /** * Extracts json object from a json string based on json path specified, and returns json string * of the extracted json object. It will return null if the input json string is invalid. * * @group collection_funcs * @since 1.6.0 */ def get_json_object(e: Column, path: String): Column = withExpr { GetJsonObject(e.expr, lit(path).expr) } /** * Creates a new row for a json column according to the given field names. * * @group collection_funcs * @since 1.6.0 */ @scala.annotation.varargs def json_tuple(json: Column, fields: String*): Column = withExpr { require(fields.nonEmpty, "at least 1 field name should be given.") JsonTuple(json.expr +: fields.map(Literal.apply)) } // scalastyle:off line.size.limit /** * (Scala-specific) Parses a column containing a JSON string into a `StructType` with the * specified schema. Returns `null`, in the case of an unparseable string. * * @param e a string column containing JSON data. * @param schema the schema to use when parsing the json string * @param options options to control how the json is parsed. Accepts the same options as the * json data source. * See * * Data Source Option in the version you use. * * @group collection_funcs * @since 2.1.0 */ // scalastyle:on line.size.limit def from_json(e: Column, schema: StructType, options: Map[String, String]): Column = from_json(e, schema.asInstanceOf[DataType], options) // scalastyle:off line.size.limit /** * (Scala-specific) Parses a column containing a JSON string into a `MapType` with `StringType` * as keys type, `StructType` or `ArrayType` with the specified schema. * Returns `null`, in the case of an unparseable string. * * @param e a string column containing JSON data. * @param schema the schema to use when parsing the json string * @param options options to control how the json is parsed. accepts the same options and the * json data source. * See * * Data Source Option in the version you use. * * @group collection_funcs * @since 2.2.0 */ // scalastyle:on line.size.limit def from_json(e: Column, schema: DataType, options: Map[String, String]): Column = withExpr { JsonToStructs(CharVarcharUtils.failIfHasCharVarchar(schema), options, e.expr) } // scalastyle:off line.size.limit /** * (Java-specific) Parses a column containing a JSON string into a `StructType` with the * specified schema. Returns `null`, in the case of an unparseable string. * * @param e a string column containing JSON data. * @param schema the schema to use when parsing the json string * @param options options to control how the json is parsed. accepts the same options and the * json data source. * See * * Data Source Option in the version you use. * * @group collection_funcs * @since 2.1.0 */ // scalastyle:on line.size.limit def from_json(e: Column, schema: StructType, options: java.util.Map[String, String]): Column = from_json(e, schema, options.asScala.toMap) // scalastyle:off line.size.limit /** * (Java-specific) Parses a column containing a JSON string into a `MapType` with `StringType` * as keys type, `StructType` or `ArrayType` with the specified schema. * Returns `null`, in the case of an unparseable string. * * @param e a string column containing JSON data. * @param schema the schema to use when parsing the json string * @param options options to control how the json is parsed. accepts the same options and the * json data source. * See * * Data Source Option in the version you use. * * @group collection_funcs * @since 2.2.0 */ // scalastyle:on line.size.limit def from_json(e: Column, schema: DataType, options: java.util.Map[String, String]): Column = { from_json(e, CharVarcharUtils.failIfHasCharVarchar(schema), options.asScala.toMap) } /** * Parses a column containing a JSON string into a `StructType` with the specified schema. * Returns `null`, in the case of an unparseable string. * * @param e a string column containing JSON data. * @param schema the schema to use when parsing the json string * * @group collection_funcs * @since 2.1.0 */ def from_json(e: Column, schema: StructType): Column = from_json(e, schema, Map.empty[String, String]) /** * Parses a column containing a JSON string into a `MapType` with `StringType` as keys type, * `StructType` or `ArrayType` with the specified schema. * Returns `null`, in the case of an unparseable string. * * @param e a string column containing JSON data. * @param schema the schema to use when parsing the json string * * @group collection_funcs * @since 2.2.0 */ def from_json(e: Column, schema: DataType): Column = from_json(e, schema, Map.empty[String, String]) // scalastyle:off line.size.limit /** * (Java-specific) Parses a column containing a JSON string into a `MapType` with `StringType` * as keys type, `StructType` or `ArrayType` with the specified schema. * Returns `null`, in the case of an unparseable string. * * @param e a string column containing JSON data. * @param schema the schema as a DDL-formatted string. * @param options options to control how the json is parsed. accepts the same options and the * json data source. * See * * Data Source Option in the version you use. * * @group collection_funcs * @since 2.1.0 */ // scalastyle:on line.size.limit def from_json(e: Column, schema: String, options: java.util.Map[String, String]): Column = { from_json(e, schema, options.asScala.toMap) } // scalastyle:off line.size.limit /** * (Scala-specific) Parses a column containing a JSON string into a `MapType` with `StringType` * as keys type, `StructType` or `ArrayType` with the specified schema. * Returns `null`, in the case of an unparseable string. * * @param e a string column containing JSON data. * @param schema the schema as a DDL-formatted string. * @param options options to control how the json is parsed. accepts the same options and the * json data source. * See * * Data Source Option in the version you use. * * @group collection_funcs * @since 2.3.0 */ // scalastyle:on line.size.limit def from_json(e: Column, schema: String, options: Map[String, String]): Column = { val dataType = parseTypeWithFallback( schema, DataType.fromJson, fallbackParser = DataType.fromDDL) from_json(e, dataType, options) } /** * (Scala-specific) Parses a column containing a JSON string into a `MapType` with `StringType` * as keys type, `StructType` or `ArrayType` of `StructType`s with the specified schema. * Returns `null`, in the case of an unparseable string. * * @param e a string column containing JSON data. * @param schema the schema to use when parsing the json string * * @group collection_funcs * @since 2.4.0 */ def from_json(e: Column, schema: Column): Column = { from_json(e, schema, Map.empty[String, String].asJava) } // scalastyle:off line.size.limit /** * (Java-specific) Parses a column containing a JSON string into a `MapType` with `StringType` * as keys type, `StructType` or `ArrayType` of `StructType`s with the specified schema. * Returns `null`, in the case of an unparseable string. * * @param e a string column containing JSON data. * @param schema the schema to use when parsing the json string * @param options options to control how the json is parsed. accepts the same options and the * json data source. * See * * Data Source Option in the version you use. * * @group collection_funcs * @since 2.4.0 */ // scalastyle:on line.size.limit def from_json(e: Column, schema: Column, options: java.util.Map[String, String]): Column = { withExpr(new JsonToStructs(e.expr, schema.expr, options.asScala.toMap)) } /** * Parses a JSON string and infers its schema in DDL format. * * @param json a JSON string. * * @group collection_funcs * @since 2.4.0 */ def schema_of_json(json: String): Column = schema_of_json(lit(json)) /** * Parses a JSON string and infers its schema in DDL format. * * @param json a foldable string column containing a JSON string. * * @group collection_funcs * @since 2.4.0 */ def schema_of_json(json: Column): Column = withExpr(new SchemaOfJson(json.expr)) // scalastyle:off line.size.limit /** * Parses a JSON string and infers its schema in DDL format using options. * * @param json a foldable string column containing JSON data. * @param options options to control how the json is parsed. accepts the same options and the * json data source. * See * * Data Source Option in the version you use. * @return a column with string literal containing schema in DDL format. * * @group collection_funcs * @since 3.0.0 */ // scalastyle:on line.size.limit def schema_of_json(json: Column, options: java.util.Map[String, String]): Column = { withExpr(SchemaOfJson(json.expr, options.asScala.toMap)) } /** * Returns the number of elements in the outermost JSON array. `NULL` is returned in case of * any other valid JSON string, `NULL` or an invalid JSON. * * @group collection_funcs * @since 3.5.0 */ def json_array_length(jsonArray: Column): Column = withExpr { LengthOfJsonArray(jsonArray.expr) } /** * Returns all the keys of the outermost JSON object as an array. If a valid JSON object is * given, all the keys of the outermost object will be returned as an array. If it is any * other valid JSON string, an invalid JSON string or an empty string, the function returns null. * * @group collection_funcs * @since 3.5.0 */ def json_object_keys(json: Column): Column = withExpr { JsonObjectKeys(json.expr) } // scalastyle:off line.size.limit /** * (Scala-specific) Converts a column containing a `StructType`, `ArrayType` or * a `MapType` into a JSON string with the specified schema. * Throws an exception, in the case of an unsupported type. * * @param e a column containing a struct, an array or a map. * @param options options to control how the struct column is converted into a json string. * accepts the same options and the json data source. * See * * Data Source Option in the version you use. * Additionally the function supports the `pretty` option which enables * pretty JSON generation. * * @group collection_funcs * @since 2.1.0 */ // scalastyle:on line.size.limit def to_json(e: Column, options: Map[String, String]): Column = withExpr { StructsToJson(options, e.expr) } // scalastyle:off line.size.limit /** * (Java-specific) Converts a column containing a `StructType`, `ArrayType` or * a `MapType` into a JSON string with the specified schema. * Throws an exception, in the case of an unsupported type. * * @param e a column containing a struct, an array or a map. * @param options options to control how the struct column is converted into a json string. * accepts the same options and the json data source. * See * * Data Source Option in the version you use. * Additionally the function supports the `pretty` option which enables * pretty JSON generation. * * @group collection_funcs * @since 2.1.0 */ // scalastyle:on line.size.limit def to_json(e: Column, options: java.util.Map[String, String]): Column = to_json(e, options.asScala.toMap) /** * Converts a column containing a `StructType`, `ArrayType` or * a `MapType` into a JSON string with the specified schema. * Throws an exception, in the case of an unsupported type. * * @param e a column containing a struct, an array or a map. * * @group collection_funcs * @since 2.1.0 */ def to_json(e: Column): Column = to_json(e, Map.empty[String, String]) /** * Masks the given string value. The function replaces characters with 'X' or 'x', and numbers * with 'n'. * This can be useful for creating copies of tables with sensitive information removed. * * @param input string value to mask. Supported types: STRING, VARCHAR, CHAR * * @group string_funcs * @since 3.5.0 */ def mask(input: Column): Column = withExpr { new Mask(input.expr) } /** * Masks the given string value. The function replaces upper-case characters with specific * character, lower-case characters with 'x', and numbers with 'n'. * This can be useful for creating copies of tables with sensitive information removed. * * @param input * string value to mask. Supported types: STRING, VARCHAR, CHAR * @param upperChar * character to replace upper-case characters with. Specify NULL to retain original character. * * @group string_funcs * @since 3.5.0 */ def mask(input: Column, upperChar: Column): Column = withExpr { new Mask(input.expr, upperChar.expr) } /** * Masks the given string value. The function replaces upper-case and lower-case characters with * the characters specified respectively, and numbers with 'n'. * This can be useful for creating copies of tables with sensitive information removed. * * @param input * string value to mask. Supported types: STRING, VARCHAR, CHAR * @param upperChar * character to replace upper-case characters with. Specify NULL to retain original character. * @param lowerChar * character to replace lower-case characters with. Specify NULL to retain original character. * * @group string_funcs * @since 3.5.0 */ def mask(input: Column, upperChar: Column, lowerChar: Column): Column = withExpr { new Mask(input.expr, upperChar.expr, lowerChar.expr) } /** * Masks the given string value. The function replaces upper-case, lower-case characters and * numbers with the characters specified respectively. * This can be useful for creating copies of tables with sensitive information removed. * * @param input * string value to mask. Supported types: STRING, VARCHAR, CHAR * @param upperChar * character to replace upper-case characters with. Specify NULL to retain original character. * @param lowerChar * character to replace lower-case characters with. Specify NULL to retain original character. * @param digitChar * character to replace digit characters with. Specify NULL to retain original character. * * @group string_funcs * @since 3.5.0 */ def mask(input: Column, upperChar: Column, lowerChar: Column, digitChar: Column): Column = { withExpr { new Mask(input.expr, upperChar.expr, lowerChar.expr, digitChar.expr) } } /** * Masks the given string value. This can be useful for creating copies of tables with sensitive * information removed. * * @param input * string value to mask. Supported types: STRING, VARCHAR, CHAR * @param upperChar * character to replace upper-case characters with. Specify NULL to retain original character. * @param lowerChar * character to replace lower-case characters with. Specify NULL to retain original character. * @param digitChar * character to replace digit characters with. Specify NULL to retain original character. * @param otherChar * character to replace all other characters with. Specify NULL to retain original character. * * @group string_funcs * @since 3.5.0 */ def mask( input: Column, upperChar: Column, lowerChar: Column, digitChar: Column, otherChar: Column): Column = { withExpr { Mask(input.expr, upperChar.expr, lowerChar.expr, digitChar.expr, otherChar.expr) } } /** * Returns length of array or map. * * The function returns null for null input if spark.sql.legacy.sizeOfNull is set to false or * spark.sql.ansi.enabled is set to true. Otherwise, the function returns -1 for null input. * With the default settings, the function returns -1 for null input. * * @group collection_funcs * @since 1.5.0 */ def size(e: Column): Column = withExpr { Size(e.expr) } /** * Returns length of array or map. This is an alias of `size` function. * * The function returns null for null input if spark.sql.legacy.sizeOfNull is set to false or * spark.sql.ansi.enabled is set to true. Otherwise, the function returns -1 for null input. * With the default settings, the function returns -1 for null input. * * @group collection_funcs * @since 3.5.0 */ def cardinality(e: Column): Column = call_function("cardinality", e) /** * Sorts the input array for the given column in ascending order, * according to the natural ordering of the array elements. * Null elements will be placed at the beginning of the returned array. * * @group collection_funcs * @since 1.5.0 */ def sort_array(e: Column): Column = sort_array(e, asc = true) /** * Sorts the input array for the given column in ascending or descending order, * according to the natural ordering of the array elements. NaN is greater than any non-NaN * elements for double/float type. Null elements will be placed at the beginning of the returned * array in ascending order or * at the end of the returned array in descending order. * * @group collection_funcs * @since 1.5.0 */ def sort_array(e: Column, asc: Boolean): Column = withExpr { SortArray(e.expr, lit(asc).expr) } /** * Returns the minimum value in the array. NaN is greater than any non-NaN elements for * double/float type. NULL elements are skipped. * * @group collection_funcs * @since 2.4.0 */ def array_min(e: Column): Column = withExpr { ArrayMin(e.expr) } /** * Returns the maximum value in the array. NaN is greater than any non-NaN elements for * double/float type. NULL elements are skipped. * * @group collection_funcs * @since 2.4.0 */ def array_max(e: Column): Column = withExpr { ArrayMax(e.expr) } /** * Returns the total number of elements in the array. The function returns null for null input. * * @group collection_funcs * @since 3.5.0 */ def array_size(e: Column): Column = withExpr { ArraySize(e.expr) } /** * Aggregate function: returns a list of objects with duplicates. * * @note The function is non-deterministic because the order of collected results depends * on the order of the rows which may be non-deterministic after a shuffle. * @group agg_funcs * @since 3.5.0 */ def array_agg(e: Column): Column = call_function("array_agg", e) /** * Returns a random permutation of the given array. * * @note The function is non-deterministic. * * @group collection_funcs * @since 2.4.0 */ def shuffle(e: Column): Column = withExpr { Shuffle(e.expr) } /** * Returns a reversed string or an array with reverse order of elements. * @group collection_funcs * @since 1.5.0 */ def reverse(e: Column): Column = withExpr { Reverse(e.expr) } /** * Creates a single array from an array of arrays. If a structure of nested arrays is deeper than * two levels, only one level of nesting is removed. * @group collection_funcs * @since 2.4.0 */ def flatten(e: Column): Column = withExpr { Flatten(e.expr) } /** * Generate a sequence of integers from start to stop, incrementing by step. * * @group collection_funcs * @since 2.4.0 */ def sequence(start: Column, stop: Column, step: Column): Column = withExpr { new Sequence(start.expr, stop.expr, step.expr) } /** * Generate a sequence of integers from start to stop, * incrementing by 1 if start is less than or equal to stop, otherwise -1. * * @group collection_funcs * @since 2.4.0 */ def sequence(start: Column, stop: Column): Column = withExpr { new Sequence(start.expr, stop.expr) } /** * Creates an array containing the left argument repeated the number of times given by the * right argument. * * @group collection_funcs * @since 2.4.0 */ def array_repeat(left: Column, right: Column): Column = withExpr { ArrayRepeat(left.expr, right.expr) } /** * Creates an array containing the left argument repeated the number of times given by the * right argument. * * @group collection_funcs * @since 2.4.0 */ def array_repeat(e: Column, count: Int): Column = array_repeat(e, lit(count)) /** * Returns true if the map contains the key. * @group collection_funcs * @since 3.3.0 */ def map_contains_key(column: Column, key: Any): Column = withExpr { ArrayContains(MapKeys(column.expr), lit(key).expr) } /** * Returns an unordered array containing the keys of the map. * @group collection_funcs * @since 2.3.0 */ def map_keys(e: Column): Column = withExpr { MapKeys(e.expr) } /** * Returns an unordered array containing the values of the map. * @group collection_funcs * @since 2.3.0 */ def map_values(e: Column): Column = withExpr { MapValues(e.expr) } /** * Returns an unordered array of all entries in the given map. * @group collection_funcs * @since 3.0.0 */ def map_entries(e: Column): Column = withExpr { MapEntries(e.expr) } /** * Returns a map created from the given array of entries. * @group collection_funcs * @since 2.4.0 */ def map_from_entries(e: Column): Column = withExpr { MapFromEntries(e.expr) } /** * Returns a merged array of structs in which the N-th struct contains all N-th values of input * arrays. * @group collection_funcs * @since 2.4.0 */ @scala.annotation.varargs def arrays_zip(e: Column*): Column = withExpr { ArraysZip(e.map(_.expr)) } /** * Returns the union of all the given maps. * @group collection_funcs * @since 2.4.0 */ @scala.annotation.varargs def map_concat(cols: Column*): Column = withExpr { MapConcat(cols.map(_.expr)) } // scalastyle:off line.size.limit /** * Parses a column containing a CSV string into a `StructType` with the specified schema. * Returns `null`, in the case of an unparseable string. * * @param e a string column containing CSV data. * @param schema the schema to use when parsing the CSV string * @param options options to control how the CSV is parsed. accepts the same options and the * CSV data source. * See * * Data Source Option in the version you use. * * @group collection_funcs * @since 3.0.0 */ // scalastyle:on line.size.limit def from_csv(e: Column, schema: StructType, options: Map[String, String]): Column = withExpr { val replaced = CharVarcharUtils.failIfHasCharVarchar(schema).asInstanceOf[StructType] CsvToStructs(replaced, options, e.expr) } // scalastyle:off line.size.limit /** * (Java-specific) Parses a column containing a CSV string into a `StructType` * with the specified schema. Returns `null`, in the case of an unparseable string. * * @param e a string column containing CSV data. * @param schema the schema to use when parsing the CSV string * @param options options to control how the CSV is parsed. accepts the same options and the * CSV data source. * See * * Data Source Option in the version you use. * * @group collection_funcs * @since 3.0.0 */ // scalastyle:on line.size.limit def from_csv(e: Column, schema: Column, options: java.util.Map[String, String]): Column = { withExpr(new CsvToStructs(e.expr, schema.expr, options.asScala.toMap)) } /** * Parses a CSV string and infers its schema in DDL format. * * @param csv a CSV string. * * @group collection_funcs * @since 3.0.0 */ def schema_of_csv(csv: String): Column = schema_of_csv(lit(csv)) /** * Parses a CSV string and infers its schema in DDL format. * * @param csv a foldable string column containing a CSV string. * * @group collection_funcs * @since 3.0.0 */ def schema_of_csv(csv: Column): Column = withExpr(new SchemaOfCsv(csv.expr)) // scalastyle:off line.size.limit /** * Parses a CSV string and infers its schema in DDL format using options. * * @param csv a foldable string column containing a CSV string. * @param options options to control how the CSV is parsed. accepts the same options and the * CSV data source. * See * * Data Source Option in the version you use. * @return a column with string literal containing schema in DDL format. * * @group collection_funcs * @since 3.0.0 */ // scalastyle:on line.size.limit def schema_of_csv(csv: Column, options: java.util.Map[String, String]): Column = { withExpr(SchemaOfCsv(csv.expr, options.asScala.toMap)) } // scalastyle:off line.size.limit /** * (Java-specific) Converts a column containing a `StructType` into a CSV string with * the specified schema. Throws an exception, in the case of an unsupported type. * * @param e a column containing a struct. * @param options options to control how the struct column is converted into a CSV string. * It accepts the same options and the CSV data source. * See * * Data Source Option in the version you use. * * @group collection_funcs * @since 3.0.0 */ // scalastyle:on line.size.limit def to_csv(e: Column, options: java.util.Map[String, String]): Column = withExpr { StructsToCsv(options.asScala.toMap, e.expr) } /** * Converts a column containing a `StructType` into a CSV string with the specified schema. * Throws an exception, in the case of an unsupported type. * * @param e a column containing a struct. * * @group collection_funcs * @since 3.0.0 */ def to_csv(e: Column): Column = to_csv(e, Map.empty[String, String].asJava) /** * A transform for timestamps and dates to partition data into years. * * @group partition_transforms * @since 3.0.0 */ def years(e: Column): Column = withExpr { Years(e.expr) } /** * A transform for timestamps and dates to partition data into months. * * @group partition_transforms * @since 3.0.0 */ def months(e: Column): Column = withExpr { Months(e.expr) } /** * A transform for timestamps and dates to partition data into days. * * @group partition_transforms * @since 3.0.0 */ def days(e: Column): Column = withExpr { Days(e.expr) } /** * Returns a string array of values within the nodes of xml that match the XPath expression. * * @group "xml_funcs" * @since 3.5.0 */ def xpath(x: Column, p: Column): Column = withExpr { XPathList(x.expr, p.expr) } /** * Returns true if the XPath expression evaluates to true, or if a matching node is found. * * @group "xml_funcs" * @since 3.5.0 */ def xpath_boolean(x: Column, p: Column): Column = withExpr { XPathBoolean(x.expr, p.expr) } /** * Returns a double value, the value zero if no match is found, * or NaN if a match is found but the value is non-numeric. * * @group "xml_funcs" * @since 3.5.0 */ def xpath_double(x: Column, p: Column): Column = withExpr { XPathDouble(x.expr, p.expr) } /** * Returns a double value, the value zero if no match is found, * or NaN if a match is found but the value is non-numeric. * * @group "xml_funcs" * @since 3.5.0 */ def xpath_number(x: Column, p: Column): Column = call_function("xpath_number", x, p) /** * Returns a float value, the value zero if no match is found, * or NaN if a match is found but the value is non-numeric. * * @group "xml_funcs" * @since 3.5.0 */ def xpath_float(x: Column, p: Column): Column = withExpr { XPathFloat(x.expr, p.expr) } /** * Returns an integer value, or the value zero if no match is found, * or a match is found but the value is non-numeric. * * @group "xml_funcs" * @since 3.5.0 */ def xpath_int(x: Column, p: Column): Column = withExpr { XPathInt(x.expr, p.expr) } /** * Returns a long integer value, or the value zero if no match is found, * or a match is found but the value is non-numeric. * * @group "xml_funcs" * @since 3.5.0 */ def xpath_long(x: Column, p: Column): Column = withExpr { XPathLong(x.expr, p.expr) } /** * Returns a short integer value, or the value zero if no match is found, * or a match is found but the value is non-numeric. * * @group "xml_funcs" * @since 3.5.0 */ def xpath_short(x: Column, p: Column): Column = withExpr { XPathShort(x.expr, p.expr) } /** * Returns the text contents of the first xml node that matches the XPath expression. * * @group "xml_funcs" * @since 3.5.0 */ def xpath_string(x: Column, p: Column): Column = withExpr { XPathString(x.expr, p.expr) } /** * A transform for timestamps to partition data into hours. * * @group partition_transforms * @since 3.0.0 */ def hours(e: Column): Column = withExpr { Hours(e.expr) } /** * Converts the timestamp without time zone `sourceTs` * from the `sourceTz` time zone to `targetTz`. * * @param sourceTz the time zone for the input timestamp. If it is missed, * the current session time zone is used as the source time zone. * @param targetTz the time zone to which the input timestamp should be converted. * @param sourceTs a timestamp without time zone. * @group datetime_funcs * @since 3.5.0 */ def convert_timezone(sourceTz: Column, targetTz: Column, sourceTs: Column): Column = withExpr { ConvertTimezone(sourceTz.expr, targetTz.expr, sourceTs.expr) } /** * Converts the timestamp without time zone `sourceTs` * from the current time zone to `targetTz`. * * @param targetTz the time zone to which the input timestamp should be converted. * @param sourceTs a timestamp without time zone. * @group datetime_funcs * @since 3.5.0 */ def convert_timezone(targetTz: Column, sourceTs: Column): Column = withExpr { new ConvertTimezone(targetTz.expr, sourceTs.expr) } /** * Make DayTimeIntervalType duration from days, hours, mins and secs. * * @group datetime_funcs * @since 3.5.0 */ def make_dt_interval(days: Column, hours: Column, mins: Column, secs: Column): Column = withExpr { MakeDTInterval(days.expr, hours.expr, mins.expr, secs.expr) } /** * Make DayTimeIntervalType duration from days, hours and mins. * * @group datetime_funcs * @since 3.5.0 */ def make_dt_interval(days: Column, hours: Column, mins: Column): Column = withExpr { new MakeDTInterval(days.expr, hours.expr, mins.expr) } /** * Make DayTimeIntervalType duration from days and hours. * * @group datetime_funcs * @since 3.5.0 */ def make_dt_interval(days: Column, hours: Column): Column = withExpr { new MakeDTInterval(days.expr, hours.expr) } /** * Make DayTimeIntervalType duration from days. * * @group datetime_funcs * @since 3.5.0 */ def make_dt_interval(days: Column): Column = withExpr { new MakeDTInterval(days.expr) } /** * Make DayTimeIntervalType duration. * * @group datetime_funcs * @since 3.5.0 */ def make_dt_interval(): Column = withExpr { new MakeDTInterval() } /** * Make interval from years, months, weeks, days, hours, mins and secs. * * @group datetime_funcs * @since 3.5.0 */ def make_interval( years: Column, months: Column, weeks: Column, days: Column, hours: Column, mins: Column, secs: Column): Column = withExpr { MakeInterval(years.expr, months.expr, weeks.expr, days.expr, hours.expr, mins.expr, secs.expr) } /** * Make interval from years, months, weeks, days, hours and mins. * * @group datetime_funcs * @since 3.5.0 */ def make_interval( years: Column, months: Column, weeks: Column, days: Column, hours: Column, mins: Column): Column = withExpr { new MakeInterval(years.expr, months.expr, weeks.expr, days.expr, hours.expr, mins.expr) } /** * Make interval from years, months, weeks, days and hours. * * @group datetime_funcs * @since 3.5.0 */ def make_interval( years: Column, months: Column, weeks: Column, days: Column, hours: Column): Column = withExpr { new MakeInterval(years.expr, months.expr, weeks.expr, days.expr, hours.expr) } /** * Make interval from years, months, weeks and days. * * @group datetime_funcs * @since 3.5.0 */ def make_interval( years: Column, months: Column, weeks: Column, days: Column): Column = withExpr { new MakeInterval(years.expr, months.expr, weeks.expr, days.expr) } /** * Make interval from years, months and weeks. * * @group datetime_funcs * @since 3.5.0 */ def make_interval(years: Column, months: Column, weeks: Column): Column = withExpr { new MakeInterval(years.expr, months.expr, weeks.expr) } /** * Make interval from years and months. * * @group datetime_funcs * @since 3.5.0 */ def make_interval(years: Column, months: Column): Column = withExpr { new MakeInterval(years.expr, months.expr) } /** * Make interval from years. * * @group datetime_funcs * @since 3.5.0 */ def make_interval(years: Column): Column = withExpr { new MakeInterval(years.expr) } /** * Make interval. * * @group datetime_funcs * @since 3.5.0 */ def make_interval(): Column = withExpr { new MakeInterval() } /** * Create timestamp from years, months, days, hours, mins, secs and timezone fields. The result * data type is consistent with the value of configuration `spark.sql.timestampType`. If the * configuration `spark.sql.ansi.enabled` is false, the function returns NULL on invalid inputs. * Otherwise, it will throw an error instead. * * @group datetime_funcs * @since 3.5.0 */ def make_timestamp( years: Column, months: Column, days: Column, hours: Column, mins: Column, secs: Column, timezone: Column): Column = withExpr { MakeTimestamp(years.expr, months.expr, days.expr, hours.expr, mins.expr, secs.expr, Some(timezone.expr)) } /** * Create timestamp from years, months, days, hours, mins and secs fields. The result data type * is consistent with the value of configuration `spark.sql.timestampType`. If the configuration * `spark.sql.ansi.enabled` is false, the function returns NULL on invalid inputs. Otherwise, it * will throw an error instead. * * @group datetime_funcs * @since 3.5.0 */ def make_timestamp( years: Column, months: Column, days: Column, hours: Column, mins: Column, secs: Column): Column = withExpr { MakeTimestamp(years.expr, months.expr, days.expr, hours.expr, mins.expr, secs.expr) } /** * Create the current timestamp with local time zone from years, months, days, hours, mins, secs * and timezone fields. If the configuration `spark.sql.ansi.enabled` is false, the function * returns NULL on invalid inputs. Otherwise, it will throw an error instead. * * @group datetime_funcs * @since 3.5.0 */ def make_timestamp_ltz( years: Column, months: Column, days: Column, hours: Column, mins: Column, secs: Column, timezone: Column): Column = call_function("make_timestamp_ltz", years, months, days, hours, mins, secs, timezone) /** * Create the current timestamp with local time zone from years, months, days, hours, mins and * secs fields. If the configuration `spark.sql.ansi.enabled` is false, the function returns * NULL on invalid inputs. Otherwise, it will throw an error instead. * * @group datetime_funcs * @since 3.5.0 */ def make_timestamp_ltz( years: Column, months: Column, days: Column, hours: Column, mins: Column, secs: Column): Column = call_function("make_timestamp_ltz", years, months, days, hours, mins, secs) /** * Create local date-time from years, months, days, hours, mins, secs fields. If the * configuration `spark.sql.ansi.enabled` is false, the function returns NULL on invalid inputs. * Otherwise, it will throw an error instead. * * @group datetime_funcs * @since 3.5.0 */ def make_timestamp_ntz( years: Column, months: Column, days: Column, hours: Column, mins: Column, secs: Column): Column = call_function("make_timestamp_ntz", years, months, days, hours, mins, secs) /** * Make year-month interval from years, months. * * @group datetime_funcs * @since 3.5.0 */ def make_ym_interval(years: Column, months: Column): Column = withExpr { MakeYMInterval(years.expr, months.expr) } /** * Make year-month interval from years. * * @group datetime_funcs * @since 3.5.0 */ def make_ym_interval(years: Column): Column = withExpr { new MakeYMInterval(years.expr) } /** * Make year-month interval. * * @group datetime_funcs * @since 3.5.0 */ def make_ym_interval(): Column = withExpr { new MakeYMInterval() } /** * A transform for any type that partitions by a hash of the input column. * * @group partition_transforms * @since 3.0.0 */ def bucket(numBuckets: Column, e: Column): Column = withExpr { numBuckets.expr match { case lit @ Literal(_, IntegerType) => Bucket(lit, e.expr) case _ => throw QueryCompilationErrors.invalidBucketsNumberError(numBuckets.toString, e.toString) } } /** * A transform for any type that partitions by a hash of the input column. * * @group partition_transforms * @since 3.0.0 */ def bucket(numBuckets: Int, e: Column): Column = withExpr { Bucket(Literal(numBuckets), e.expr) } ////////////////////////////////////////////////////////////////////////////////////////////// // Predicates functions ////////////////////////////////////////////////////////////////////////////////////////////// /** * Returns `col2` if `col1` is null, or `col1` otherwise. * * @group predicates_funcs * @since 3.5.0 */ def ifnull(col1: Column, col2: Column): Column = call_function("ifnull", col1, col2) /** * Returns true if `col` is not null, or false otherwise. * * @group predicates_funcs * @since 3.5.0 */ def isnotnull(col: Column): Column = withExpr { IsNotNull(col.expr) } /** * Returns same result as the EQUAL(=) operator for non-null operands, * but returns true if both are null, false if one of the them is null. * * @group predicates_funcs * @since 3.5.0 */ def equal_null(col1: Column, col2: Column): Column = withExpr { new EqualNull(col1.expr, col2.expr) } /** * Returns null if `col1` equals to `col2`, or `col1` otherwise. * * @group predicates_funcs * @since 3.5.0 */ def nullif(col1: Column, col2: Column): Column = withExpr { new NullIf(col1.expr, col2.expr) } /** * Returns `col2` if `col1` is null, or `col1` otherwise. * * @group predicates_funcs * @since 3.5.0 */ def nvl(col1: Column, col2: Column): Column = withExpr { new Nvl(col1.expr, col2.expr) } /** * Returns `col2` if `col1` is not null, or `col3` otherwise. * * @group predicates_funcs * @since 3.5.0 */ def nvl2(col1: Column, col2: Column, col3: Column): Column = withExpr { new Nvl2(col1.expr, col2.expr, col3.expr) } // scalastyle:off line.size.limit // scalastyle:off parameter.number /* Use the following code to generate: (0 to 10).foreach { x => val types = (1 to x).foldRight("RT")((i, s) => {s"A$i, $s"}) val typeTags = (1 to x).map(i => s"A$i: TypeTag").foldLeft("RT: TypeTag")(_ + ", " + _) val inputEncoders = (1 to x).foldRight("Nil")((i, s) => {s"Try(ExpressionEncoder[A$i]()).toOption :: $s"}) println(s""" |/** | * Defines a Scala closure of $x arguments as user-defined function (UDF). | * The data types are automatically inferred based on the Scala closure's | * signature. By default the returned UDF is deterministic. To change it to | * nondeterministic, call the API `UserDefinedFunction.asNondeterministic()`. | * | * @group udf_funcs | * @since 1.3.0 | */ |def udf[$typeTags](f: Function$x[$types]): UserDefinedFunction = { | val outputEncoder = Try(ExpressionEncoder[RT]()).toOption | val ScalaReflection.Schema(dataType, nullable) = outputEncoder.map(UDFRegistration.outputSchema).getOrElse(ScalaReflection.schemaFor[RT]) | val inputEncoders = $inputEncoders | val udf = SparkUserDefinedFunction(f, dataType, inputEncoders, outputEncoder) | if (nullable) udf else udf.asNonNullable() |}""".stripMargin) } (0 to 10).foreach { i => val extTypeArgs = (0 to i).map(_ => "_").mkString(", ") val anyTypeArgs = (0 to i).map(_ => "Any").mkString(", ") val anyCast = s".asInstanceOf[UDF$i[$anyTypeArgs]]" val anyParams = (1 to i).map(_ => "_: Any").mkString(", ") val funcCall = if (i == 0) s"() => f$anyCast.call($anyParams)" else s"f$anyCast.call($anyParams)" println(s""" |/** | * Defines a Java UDF$i instance as user-defined function (UDF). | * The caller must specify the output data type, and there is no automatic input type coercion. | * By default the returned UDF is deterministic. To change it to nondeterministic, call the | * API `UserDefinedFunction.asNondeterministic()`. | * | * @group udf_funcs | * @since 2.3.0 | */ |def udf(f: UDF$i[$extTypeArgs], returnType: DataType): UserDefinedFunction = { | val func = $funcCall | SparkUserDefinedFunction(func, returnType, inputEncoders = Seq.fill($i)(None)) |}""".stripMargin) } */ ////////////////////////////////////////////////////////////////////////////////////////////// // Scala UDF functions ////////////////////////////////////////////////////////////////////////////////////////////// /** * Obtains a `UserDefinedFunction` that wraps the given `Aggregator` * so that it may be used with untyped Data Frames. * {{{ * val agg = // Aggregator[IN, BUF, OUT] * * // declare a UDF based on agg * val aggUDF = udaf(agg) * val aggData = df.agg(aggUDF($"colname")) * * // register agg as a named function * spark.udf.register("myAggName", udaf(agg)) * }}} * * @tparam IN the aggregator input type * @tparam BUF the aggregating buffer type * @tparam OUT the finalized output type * * @param agg the typed Aggregator * * @return a UserDefinedFunction that can be used as an aggregating expression. * * @note The input encoder is inferred from the input type IN. */ def udaf[IN: TypeTag, BUF, OUT](agg: Aggregator[IN, BUF, OUT]): UserDefinedFunction = { udaf(agg, ExpressionEncoder[IN]()) } /** * Obtains a `UserDefinedFunction` that wraps the given `Aggregator` * so that it may be used with untyped Data Frames. * {{{ * Aggregator agg = // custom Aggregator * Encoder enc = // input encoder * * // declare a UDF based on agg * UserDefinedFunction aggUDF = udaf(agg, enc) * DataFrame aggData = df.agg(aggUDF($"colname")) * * // register agg as a named function * spark.udf.register("myAggName", udaf(agg, enc)) * }}} * * @tparam IN the aggregator input type * @tparam BUF the aggregating buffer type * @tparam OUT the finalized output type * * @param agg the typed Aggregator * @param inputEncoder a specific input encoder to use * * @return a UserDefinedFunction that can be used as an aggregating expression * * @note This overloading takes an explicit input encoder, to support UDAF * declarations in Java. */ def udaf[IN, BUF, OUT]( agg: Aggregator[IN, BUF, OUT], inputEncoder: Encoder[IN]): UserDefinedFunction = { UserDefinedAggregator(agg, inputEncoder) } /** * Defines a Scala closure of 0 arguments as user-defined function (UDF). * The data types are automatically inferred based on the Scala closure's * signature. By default the returned UDF is deterministic. To change it to * nondeterministic, call the API `UserDefinedFunction.asNondeterministic()`. * * @group udf_funcs * @since 1.3.0 */ def udf[RT: TypeTag](f: Function0[RT]): UserDefinedFunction = { val outputEncoder = Try(ExpressionEncoder[RT]()).toOption val ScalaReflection.Schema(dataType, nullable) = outputEncoder.map(UDFRegistration.outputSchema).getOrElse(ScalaReflection.schemaFor[RT]) val inputEncoders = Nil val udf = SparkUserDefinedFunction(f, dataType, inputEncoders, outputEncoder) if (nullable) udf else udf.asNonNullable() } /** * Defines a Scala closure of 1 arguments as user-defined function (UDF). * The data types are automatically inferred based on the Scala closure's * signature. By default the returned UDF is deterministic. To change it to * nondeterministic, call the API `UserDefinedFunction.asNondeterministic()`. * * @group udf_funcs * @since 1.3.0 */ def udf[RT: TypeTag, A1: TypeTag](f: Function1[A1, RT]): UserDefinedFunction = { val outputEncoder = Try(ExpressionEncoder[RT]()).toOption val ScalaReflection.Schema(dataType, nullable) = outputEncoder.map(UDFRegistration.outputSchema).getOrElse(ScalaReflection.schemaFor[RT]) val inputEncoders = Try(ExpressionEncoder[A1]()).toOption :: Nil val udf = SparkUserDefinedFunction(f, dataType, inputEncoders, outputEncoder) if (nullable) udf else udf.asNonNullable() } /** * Defines a Scala closure of 2 arguments as user-defined function (UDF). * The data types are automatically inferred based on the Scala closure's * signature. By default the returned UDF is deterministic. To change it to * nondeterministic, call the API `UserDefinedFunction.asNondeterministic()`. * * @group udf_funcs * @since 1.3.0 */ def udf[RT: TypeTag, A1: TypeTag, A2: TypeTag](f: Function2[A1, A2, RT]): UserDefinedFunction = { val outputEncoder = Try(ExpressionEncoder[RT]()).toOption val ScalaReflection.Schema(dataType, nullable) = outputEncoder.map(UDFRegistration.outputSchema).getOrElse(ScalaReflection.schemaFor[RT]) val inputEncoders = Try(ExpressionEncoder[A1]()).toOption :: Try(ExpressionEncoder[A2]()).toOption :: Nil val udf = SparkUserDefinedFunction(f, dataType, inputEncoders, outputEncoder) if (nullable) udf else udf.asNonNullable() } /** * Defines a Scala closure of 3 arguments as user-defined function (UDF). * The data types are automatically inferred based on the Scala closure's * signature. By default the returned UDF is deterministic. To change it to * nondeterministic, call the API `UserDefinedFunction.asNondeterministic()`. * * @group udf_funcs * @since 1.3.0 */ def udf[RT: TypeTag, A1: TypeTag, A2: TypeTag, A3: TypeTag](f: Function3[A1, A2, A3, RT]): UserDefinedFunction = { val outputEncoder = Try(ExpressionEncoder[RT]()).toOption val ScalaReflection.Schema(dataType, nullable) = outputEncoder.map(UDFRegistration.outputSchema).getOrElse(ScalaReflection.schemaFor[RT]) val inputEncoders = Try(ExpressionEncoder[A1]()).toOption :: Try(ExpressionEncoder[A2]()).toOption :: Try(ExpressionEncoder[A3]()).toOption :: Nil val udf = SparkUserDefinedFunction(f, dataType, inputEncoders, outputEncoder) if (nullable) udf else udf.asNonNullable() } /** * Defines a Scala closure of 4 arguments as user-defined function (UDF). * The data types are automatically inferred based on the Scala closure's * signature. By default the returned UDF is deterministic. To change it to * nondeterministic, call the API `UserDefinedFunction.asNondeterministic()`. * * @group udf_funcs * @since 1.3.0 */ def udf[RT: TypeTag, A1: TypeTag, A2: TypeTag, A3: TypeTag, A4: TypeTag](f: Function4[A1, A2, A3, A4, RT]): UserDefinedFunction = { val outputEncoder = Try(ExpressionEncoder[RT]()).toOption val ScalaReflection.Schema(dataType, nullable) = outputEncoder.map(UDFRegistration.outputSchema).getOrElse(ScalaReflection.schemaFor[RT]) val inputEncoders = Try(ExpressionEncoder[A1]()).toOption :: Try(ExpressionEncoder[A2]()).toOption :: Try(ExpressionEncoder[A3]()).toOption :: Try(ExpressionEncoder[A4]()).toOption :: Nil val udf = SparkUserDefinedFunction(f, dataType, inputEncoders, outputEncoder) if (nullable) udf else udf.asNonNullable() } /** * Defines a Scala closure of 5 arguments as user-defined function (UDF). * The data types are automatically inferred based on the Scala closure's * signature. By default the returned UDF is deterministic. To change it to * nondeterministic, call the API `UserDefinedFunction.asNondeterministic()`. * * @group udf_funcs * @since 1.3.0 */ def udf[RT: TypeTag, A1: TypeTag, A2: TypeTag, A3: TypeTag, A4: TypeTag, A5: TypeTag](f: Function5[A1, A2, A3, A4, A5, RT]): UserDefinedFunction = { val outputEncoder = Try(ExpressionEncoder[RT]()).toOption val ScalaReflection.Schema(dataType, nullable) = outputEncoder.map(UDFRegistration.outputSchema).getOrElse(ScalaReflection.schemaFor[RT]) val inputEncoders = Try(ExpressionEncoder[A1]()).toOption :: Try(ExpressionEncoder[A2]()).toOption :: Try(ExpressionEncoder[A3]()).toOption :: Try(ExpressionEncoder[A4]()).toOption :: Try(ExpressionEncoder[A5]()).toOption :: Nil val udf = SparkUserDefinedFunction(f, dataType, inputEncoders, outputEncoder) if (nullable) udf else udf.asNonNullable() } /** * Defines a Scala closure of 6 arguments as user-defined function (UDF). * The data types are automatically inferred based on the Scala closure's * signature. By default the returned UDF is deterministic. To change it to * nondeterministic, call the API `UserDefinedFunction.asNondeterministic()`. * * @group udf_funcs * @since 1.3.0 */ def udf[RT: TypeTag, A1: TypeTag, A2: TypeTag, A3: TypeTag, A4: TypeTag, A5: TypeTag, A6: TypeTag](f: Function6[A1, A2, A3, A4, A5, A6, RT]): UserDefinedFunction = { val outputEncoder = Try(ExpressionEncoder[RT]()).toOption val ScalaReflection.Schema(dataType, nullable) = outputEncoder.map(UDFRegistration.outputSchema).getOrElse(ScalaReflection.schemaFor[RT]) val inputEncoders = Try(ExpressionEncoder[A1]()).toOption :: Try(ExpressionEncoder[A2]()).toOption :: Try(ExpressionEncoder[A3]()).toOption :: Try(ExpressionEncoder[A4]()).toOption :: Try(ExpressionEncoder[A5]()).toOption :: Try(ExpressionEncoder[A6]()).toOption :: Nil val udf = SparkUserDefinedFunction(f, dataType, inputEncoders, outputEncoder) if (nullable) udf else udf.asNonNullable() } /** * Defines a Scala closure of 7 arguments as user-defined function (UDF). * The data types are automatically inferred based on the Scala closure's * signature. By default the returned UDF is deterministic. To change it to * nondeterministic, call the API `UserDefinedFunction.asNondeterministic()`. * * @group udf_funcs * @since 1.3.0 */ def udf[RT: TypeTag, A1: TypeTag, A2: TypeTag, A3: TypeTag, A4: TypeTag, A5: TypeTag, A6: TypeTag, A7: TypeTag](f: Function7[A1, A2, A3, A4, A5, A6, A7, RT]): UserDefinedFunction = { val outputEncoder = Try(ExpressionEncoder[RT]()).toOption val ScalaReflection.Schema(dataType, nullable) = outputEncoder.map(UDFRegistration.outputSchema).getOrElse(ScalaReflection.schemaFor[RT]) val inputEncoders = Try(ExpressionEncoder[A1]()).toOption :: Try(ExpressionEncoder[A2]()).toOption :: Try(ExpressionEncoder[A3]()).toOption :: Try(ExpressionEncoder[A4]()).toOption :: Try(ExpressionEncoder[A5]()).toOption :: Try(ExpressionEncoder[A6]()).toOption :: Try(ExpressionEncoder[A7]()).toOption :: Nil val udf = SparkUserDefinedFunction(f, dataType, inputEncoders, outputEncoder) if (nullable) udf else udf.asNonNullable() } /** * Defines a Scala closure of 8 arguments as user-defined function (UDF). * The data types are automatically inferred based on the Scala closure's * signature. By default the returned UDF is deterministic. To change it to * nondeterministic, call the API `UserDefinedFunction.asNondeterministic()`. * * @group udf_funcs * @since 1.3.0 */ def udf[RT: TypeTag, A1: TypeTag, A2: TypeTag, A3: TypeTag, A4: TypeTag, A5: TypeTag, A6: TypeTag, A7: TypeTag, A8: TypeTag](f: Function8[A1, A2, A3, A4, A5, A6, A7, A8, RT]): UserDefinedFunction = { val outputEncoder = Try(ExpressionEncoder[RT]()).toOption val ScalaReflection.Schema(dataType, nullable) = outputEncoder.map(UDFRegistration.outputSchema).getOrElse(ScalaReflection.schemaFor[RT]) val inputEncoders = Try(ExpressionEncoder[A1]()).toOption :: Try(ExpressionEncoder[A2]()).toOption :: Try(ExpressionEncoder[A3]()).toOption :: Try(ExpressionEncoder[A4]()).toOption :: Try(ExpressionEncoder[A5]()).toOption :: Try(ExpressionEncoder[A6]()).toOption :: Try(ExpressionEncoder[A7]()).toOption :: Try(ExpressionEncoder[A8]()).toOption :: Nil val udf = SparkUserDefinedFunction(f, dataType, inputEncoders, outputEncoder) if (nullable) udf else udf.asNonNullable() } /** * Defines a Scala closure of 9 arguments as user-defined function (UDF). * The data types are automatically inferred based on the Scala closure's * signature. By default the returned UDF is deterministic. To change it to * nondeterministic, call the API `UserDefinedFunction.asNondeterministic()`. * * @group udf_funcs * @since 1.3.0 */ def udf[RT: TypeTag, A1: TypeTag, A2: TypeTag, A3: TypeTag, A4: TypeTag, A5: TypeTag, A6: TypeTag, A7: TypeTag, A8: TypeTag, A9: TypeTag](f: Function9[A1, A2, A3, A4, A5, A6, A7, A8, A9, RT]): UserDefinedFunction = { val outputEncoder = Try(ExpressionEncoder[RT]()).toOption val ScalaReflection.Schema(dataType, nullable) = outputEncoder.map(UDFRegistration.outputSchema).getOrElse(ScalaReflection.schemaFor[RT]) val inputEncoders = Try(ExpressionEncoder[A1]()).toOption :: Try(ExpressionEncoder[A2]()).toOption :: Try(ExpressionEncoder[A3]()).toOption :: Try(ExpressionEncoder[A4]()).toOption :: Try(ExpressionEncoder[A5]()).toOption :: Try(ExpressionEncoder[A6]()).toOption :: Try(ExpressionEncoder[A7]()).toOption :: Try(ExpressionEncoder[A8]()).toOption :: Try(ExpressionEncoder[A9]()).toOption :: Nil val udf = SparkUserDefinedFunction(f, dataType, inputEncoders, outputEncoder) if (nullable) udf else udf.asNonNullable() } /** * Defines a Scala closure of 10 arguments as user-defined function (UDF). * The data types are automatically inferred based on the Scala closure's * signature. By default the returned UDF is deterministic. To change it to * nondeterministic, call the API `UserDefinedFunction.asNondeterministic()`. * * @group udf_funcs * @since 1.3.0 */ def udf[RT: TypeTag, A1: TypeTag, A2: TypeTag, A3: TypeTag, A4: TypeTag, A5: TypeTag, A6: TypeTag, A7: TypeTag, A8: TypeTag, A9: TypeTag, A10: TypeTag](f: Function10[A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, RT]): UserDefinedFunction = { val outputEncoder = Try(ExpressionEncoder[RT]()).toOption val ScalaReflection.Schema(dataType, nullable) = outputEncoder.map(UDFRegistration.outputSchema).getOrElse(ScalaReflection.schemaFor[RT]) val inputEncoders = Try(ExpressionEncoder[A1]()).toOption :: Try(ExpressionEncoder[A2]()).toOption :: Try(ExpressionEncoder[A3]()).toOption :: Try(ExpressionEncoder[A4]()).toOption :: Try(ExpressionEncoder[A5]()).toOption :: Try(ExpressionEncoder[A6]()).toOption :: Try(ExpressionEncoder[A7]()).toOption :: Try(ExpressionEncoder[A8]()).toOption :: Try(ExpressionEncoder[A9]()).toOption :: Try(ExpressionEncoder[A10]()).toOption :: Nil val udf = SparkUserDefinedFunction(f, dataType, inputEncoders, outputEncoder) if (nullable) udf else udf.asNonNullable() } ////////////////////////////////////////////////////////////////////////////////////////////// // Java UDF functions ////////////////////////////////////////////////////////////////////////////////////////////// /** * Defines a Java UDF0 instance as user-defined function (UDF). * The caller must specify the output data type, and there is no automatic input type coercion. * By default the returned UDF is deterministic. To change it to nondeterministic, call the * API `UserDefinedFunction.asNondeterministic()`. * * @group udf_funcs * @since 2.3.0 */ def udf(f: UDF0[_], returnType: DataType): UserDefinedFunction = { val func = () => f.asInstanceOf[UDF0[Any]].call() SparkUserDefinedFunction(func, returnType, inputEncoders = Seq.fill(0)(None)) } /** * Defines a Java UDF1 instance as user-defined function (UDF). * The caller must specify the output data type, and there is no automatic input type coercion. * By default the returned UDF is deterministic. To change it to nondeterministic, call the * API `UserDefinedFunction.asNondeterministic()`. * * @group udf_funcs * @since 2.3.0 */ def udf(f: UDF1[_, _], returnType: DataType): UserDefinedFunction = { val func = f.asInstanceOf[UDF1[Any, Any]].call(_: Any) SparkUserDefinedFunction(func, returnType, inputEncoders = Seq.fill(1)(None)) } /** * Defines a Java UDF2 instance as user-defined function (UDF). * The caller must specify the output data type, and there is no automatic input type coercion. * By default the returned UDF is deterministic. To change it to nondeterministic, call the * API `UserDefinedFunction.asNondeterministic()`. * * @group udf_funcs * @since 2.3.0 */ def udf(f: UDF2[_, _, _], returnType: DataType): UserDefinedFunction = { val func = f.asInstanceOf[UDF2[Any, Any, Any]].call(_: Any, _: Any) SparkUserDefinedFunction(func, returnType, inputEncoders = Seq.fill(2)(None)) } /** * Defines a Java UDF3 instance as user-defined function (UDF). * The caller must specify the output data type, and there is no automatic input type coercion. * By default the returned UDF is deterministic. To change it to nondeterministic, call the * API `UserDefinedFunction.asNondeterministic()`. * * @group udf_funcs * @since 2.3.0 */ def udf(f: UDF3[_, _, _, _], returnType: DataType): UserDefinedFunction = { val func = f.asInstanceOf[UDF3[Any, Any, Any, Any]].call(_: Any, _: Any, _: Any) SparkUserDefinedFunction(func, returnType, inputEncoders = Seq.fill(3)(None)) } /** * Defines a Java UDF4 instance as user-defined function (UDF). * The caller must specify the output data type, and there is no automatic input type coercion. * By default the returned UDF is deterministic. To change it to nondeterministic, call the * API `UserDefinedFunction.asNondeterministic()`. * * @group udf_funcs * @since 2.3.0 */ def udf(f: UDF4[_, _, _, _, _], returnType: DataType): UserDefinedFunction = { val func = f.asInstanceOf[UDF4[Any, Any, Any, Any, Any]].call(_: Any, _: Any, _: Any, _: Any) SparkUserDefinedFunction(func, returnType, inputEncoders = Seq.fill(4)(None)) } /** * Defines a Java UDF5 instance as user-defined function (UDF). * The caller must specify the output data type, and there is no automatic input type coercion. * By default the returned UDF is deterministic. To change it to nondeterministic, call the * API `UserDefinedFunction.asNondeterministic()`. * * @group udf_funcs * @since 2.3.0 */ def udf(f: UDF5[_, _, _, _, _, _], returnType: DataType): UserDefinedFunction = { val func = f.asInstanceOf[UDF5[Any, Any, Any, Any, Any, Any]].call(_: Any, _: Any, _: Any, _: Any, _: Any) SparkUserDefinedFunction(func, returnType, inputEncoders = Seq.fill(5)(None)) } /** * Defines a Java UDF6 instance as user-defined function (UDF). * The caller must specify the output data type, and there is no automatic input type coercion. * By default the returned UDF is deterministic. To change it to nondeterministic, call the * API `UserDefinedFunction.asNondeterministic()`. * * @group udf_funcs * @since 2.3.0 */ def udf(f: UDF6[_, _, _, _, _, _, _], returnType: DataType): UserDefinedFunction = { val func = f.asInstanceOf[UDF6[Any, Any, Any, Any, Any, Any, Any]].call(_: Any, _: Any, _: Any, _: Any, _: Any, _: Any) SparkUserDefinedFunction(func, returnType, inputEncoders = Seq.fill(6)(None)) } /** * Defines a Java UDF7 instance as user-defined function (UDF). * The caller must specify the output data type, and there is no automatic input type coercion. * By default the returned UDF is deterministic. To change it to nondeterministic, call the * API `UserDefinedFunction.asNondeterministic()`. * * @group udf_funcs * @since 2.3.0 */ def udf(f: UDF7[_, _, _, _, _, _, _, _], returnType: DataType): UserDefinedFunction = { val func = f.asInstanceOf[UDF7[Any, Any, Any, Any, Any, Any, Any, Any]].call(_: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any) SparkUserDefinedFunction(func, returnType, inputEncoders = Seq.fill(7)(None)) } /** * Defines a Java UDF8 instance as user-defined function (UDF). * The caller must specify the output data type, and there is no automatic input type coercion. * By default the returned UDF is deterministic. To change it to nondeterministic, call the * API `UserDefinedFunction.asNondeterministic()`. * * @group udf_funcs * @since 2.3.0 */ def udf(f: UDF8[_, _, _, _, _, _, _, _, _], returnType: DataType): UserDefinedFunction = { val func = f.asInstanceOf[UDF8[Any, Any, Any, Any, Any, Any, Any, Any, Any]].call(_: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any) SparkUserDefinedFunction(func, returnType, inputEncoders = Seq.fill(8)(None)) } /** * Defines a Java UDF9 instance as user-defined function (UDF). * The caller must specify the output data type, and there is no automatic input type coercion. * By default the returned UDF is deterministic. To change it to nondeterministic, call the * API `UserDefinedFunction.asNondeterministic()`. * * @group udf_funcs * @since 2.3.0 */ def udf(f: UDF9[_, _, _, _, _, _, _, _, _, _], returnType: DataType): UserDefinedFunction = { val func = f.asInstanceOf[UDF9[Any, Any, Any, Any, Any, Any, Any, Any, Any, Any]].call(_: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any) SparkUserDefinedFunction(func, returnType, inputEncoders = Seq.fill(9)(None)) } /** * Defines a Java UDF10 instance as user-defined function (UDF). * The caller must specify the output data type, and there is no automatic input type coercion. * By default the returned UDF is deterministic. To change it to nondeterministic, call the * API `UserDefinedFunction.asNondeterministic()`. * * @group udf_funcs * @since 2.3.0 */ def udf(f: UDF10[_, _, _, _, _, _, _, _, _, _, _], returnType: DataType): UserDefinedFunction = { val func = f.asInstanceOf[UDF10[Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any]].call(_: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any) SparkUserDefinedFunction(func, returnType, inputEncoders = Seq.fill(10)(None)) } // scalastyle:on parameter.number // scalastyle:on line.size.limit /** * Defines a deterministic user-defined function (UDF) using a Scala closure. For this variant, * the caller must specify the output data type, and there is no automatic input type coercion. * By default the returned UDF is deterministic. To change it to nondeterministic, call the * API `UserDefinedFunction.asNondeterministic()`. * * Note that, although the Scala closure can have primitive-type function argument, it doesn't * work well with null values. Because the Scala closure is passed in as Any type, there is no * type information for the function arguments. Without the type information, Spark may blindly * pass null to the Scala closure with primitive-type argument, and the closure will see the * default value of the Java type for the null argument, e.g. `udf((x: Int) => x, IntegerType)`, * the result is 0 for null input. * * @param f A closure in Scala * @param dataType The output data type of the UDF * * @group udf_funcs * @since 2.0.0 */ @deprecated("Scala `udf` method with return type parameter is deprecated. " + "Please use Scala `udf` method without return type parameter.", "3.0.0") def udf(f: AnyRef, dataType: DataType): UserDefinedFunction = { if (!SQLConf.get.getConf(SQLConf.LEGACY_ALLOW_UNTYPED_SCALA_UDF)) { throw QueryCompilationErrors.usingUntypedScalaUDFError() } SparkUserDefinedFunction(f, dataType, inputEncoders = Nil) } /** * Call an user-defined function. * * @group udf_funcs * @since 1.5.0 */ @scala.annotation.varargs @deprecated("Use call_udf") def callUDF(udfName: String, cols: Column*): Column = call_function(Seq(udfName), cols: _*) /** * Call an user-defined function. * Example: * {{{ * import org.apache.spark.sql._ * * val df = Seq(("id1", 1), ("id2", 4), ("id3", 5)).toDF("id", "value") * val spark = df.sparkSession * spark.udf.register("simpleUDF", (v: Int) => v * v) * df.select($"id", call_udf("simpleUDF", $"value")) * }}} * * @group udf_funcs * @since 3.2.0 */ @scala.annotation.varargs def call_udf(udfName: String, cols: Column*): Column = call_function(Seq(udfName), cols: _*) /** * Call a SQL function. * * @param funcName function name that follows the SQL identifier syntax * (can be quoted, can be qualified) * @param cols the expression parameters of function * @since 3.5.0 */ @scala.annotation.varargs def call_function(funcName: String, cols: Column*): Column = { val parser = SparkSession.getActiveSession.map(_.sessionState.sqlParser).getOrElse { new SparkSqlParser() } val nameParts = parser.parseMultipartIdentifier(funcName) call_function(nameParts, cols: _*) } private def call_function(nameParts: Seq[String], cols: Column*): Column = withExpr { UnresolvedFunction(nameParts, cols.map(_.expr), false) } /** * Unwrap UDT data type column into its underlying type. * * @since 3.4.0 */ def unwrap_udt(column: Column): Column = withExpr { UnwrapUDT(column.expr) } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy