All Downloads are FREE. Search and download functionalities are using the official Maven repository.

scripts.algorithms.GLM-predict.dml Maven / Gradle / Ivy

There is a newer version: 1.2.0
Show newest version
#-------------------------------------------------------------
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
# 
#   http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
#
#-------------------------------------------------------------

# 
# THIS SCRIPT APPLIES THE ESTIMATED PARAMETERS OF A GLM-TYPE REGRESSION TO A NEW (TEST) DATASET
#
# INPUT PARAMETERS:
# ---------------------------------------------------------------------------------------------
# NAME  TYPE   DEFAULT  MEANING
# ---------------------------------------------------------------------------------------------
# X     String  ---     Location to read the matrix X of records (feature vectors)
# B     String  ---     Location to read GLM regression parameters (the betas), with dimensions
#                           ncol(X)   x k: do not add intercept
#                           ncol(X)+1 x k: add intercept as given by the last B-row
#                           if k > 1, use only B[, 1] unless it is Multinomial Logit (dfam=3)
# M     String  " "     Location to write the matrix of predicted response means/probabilities:
#                           nrow(X) x 1  : for Power-type distributions (dfam=1)
#                           nrow(X) x 2  : for Binomial distribution (dfam=2), column 2 is "No"
#                           nrow(X) x k+1: for Multinomial Logit (dfam=3), col# k+1 is baseline
# Y     String  " "     Location to read response matrix Y, with the following dimensions:
#                           nrow(X) x 1  : for all distributions (dfam=1 or 2 or 3)
#                           nrow(X) x 2  : for Binomial (dfam=2) given by (#pos, #neg) counts
#                           nrow(X) x k+1: for Multinomial (dfam=3) given by category counts
# O     String  " "     Location to write the printed statistics; by default is standard output
# dfam  Int     1       GLM distribution family: 1 = Power, 2 = Binomial, 3 = Multinomial Logit
# vpow  Double  0.0     Power for Variance defined as (mean)^power (ignored if dfam != 1):
#                       0.0 = Gaussian, 1.0 = Poisson, 2.0 = Gamma, 3.0 = Inverse Gaussian
# link  Int     0       Link function code: 0 = canonical (depends on distribution), 1 = Power,
#                       2 = Logit, 3 = Probit, 4 = Cloglog, 5 = Cauchit; ignored if Multinomial
# lpow  Double  1.0     Power for Link function defined as (mean)^power (ignored if link != 1):
#                       -2.0 = 1/mu^2, -1.0 = reciprocal, 0.0 = log, 0.5 = sqrt, 1.0 = identity
# disp  Double  1.0     Dispersion value, when available
# fmt   String "text"   Matrix output format, usually "text" or "csv" (for matrices only)
# ---------------------------------------------------------------------------------------------
# OUTPUT: Matrix M of predicted means/probabilities, some statistics in CSV format (see below)
# The statistics are printed one per each line, in the following CSV format:
# NAME,[COLUMN],[SCALED],VALUE
#   NAME   is the string identifier for the statistic, see the table below.
#   COLUMN is an optional integer value that specifies the Y-column for per-column statistics;
#          note that a Binomial/Multinomial one-column Y input is converted into multi-column.
#   SCALED is an optional Boolean value (TRUE or FALSE) that tells us whether or not the input
#          dispersion parameter (disp) scaling has been applied to this statistic.
#   VALUE  is the value of the statistic.
#
# NAME                  COLUMN  SCALED  MEANING
# ---------------------------------------------------------------------------------------------
# LOGLHOOD_Z                      +     Log-Likelihood Z-score (in st.dev's from mean)
# LOGLHOOD_Z_PVAL                 +     Log-Likelihood Z-score p-value
# PEARSON_X2                      +     Pearson residual X^2 statistic
# PEARSON_X2_BY_DF                +     Pearson X^2 divided by degrees of freedom
# PEARSON_X2_PVAL                 +     Pearson X^2 p-value
# DEVIANCE_G2                     +     Deviance from saturated model G^2 statistic
# DEVIANCE_G2_BY_DF               +     Deviance G^2 divided by degrees of freedom
# DEVIANCE_G2_PVAL                +     Deviance G^2 p-value
# AVG_TOT_Y               +             Average of Y column for a single response value
# STDEV_TOT_Y             +             St.Dev. of Y column for a single response value
# AVG_RES_Y               +             Average of column residual, i.e. of Y - mean(Y|X)
# STDEV_RES_Y             +             St.Dev. of column residual, i.e. of Y - mean(Y|X)
# PRED_STDEV_RES          +       +     Model-predicted St.Dev. of column residual
# PLAIN_R2                +             Plain R^2 of Y column residual with bias included
# ADJUSTED_R2             +             Adjusted R^2 of Y column residual with bias included
# PLAIN_R2_NOBIAS         +             Plain R^2 of Y column residual with bias subtracted
# ADJUSTED_R2_NOBIAS      +             Adjusted R^2 of Y column residual with bias subtracted
# ---------------------------------------------------------------------------------------------
#
# Example with distribution = "Poisson.log":
# hadoop jar SystemML.jar -f GLM_HOME/GLM-predict.dml -nvargs dfam=1 vpow=1.0 link=1 lpow=0.0
#   disp=3.0 fmt=csv X=INPUT_DIR/X B=INPUT_DIR/B Y=INPUT_DIR/Y M=OUTPUT_DIR/M O=OUTPUT_DIR/out.csv

# Default values for input parameters:
fileX = $X;
fileB = $B;
fileM = ifdef ($M, " ");
fileY = ifdef ($Y, " ");
fileO = ifdef ($O, " ");
fmtM  = ifdef ($fmt, "text");

dist_type  = ifdef ($dfam, 1);    # $dfam = 1;
var_power  = ifdef ($vpow, 0.0);  # $vpow = 0.0;
link_type  = ifdef ($link, 0);    # $link = 0;
link_power = ifdef ($lpow, 1.0);  # $lpow = 1.0;
dispersion = ifdef ($disp, 1.0);  # $disp = 1.0;

var_power  = as.double (var_power);
link_power = as.double (link_power); 
dispersion = as.double (dispersion);

if (dist_type == 3) {
    link_type = 2;
} else { if (link_type == 0) { # Canonical Link
    if (dist_type == 1) {
        link_type = 1;
        link_power = 1.0 - var_power;
    } else { if (dist_type == 2) {
            link_type = 2;
}}} }

X = read (fileX);
num_records  = nrow (X);
num_features = ncol (X);

B_full = read (fileB);
if (dist_type == 3) {
    beta =  B_full [1 : ncol (X),  ];
    intercept = B_full [nrow(B_full),  ];
} else {
    beta =  B_full [1 : ncol (X), 1];
    intercept = B_full [nrow(B_full), 1];
}
if (nrow (B_full) == ncol (X)) {
    intercept = 0.0 * intercept;
    is_intercept = FALSE;
} else {
    num_features = num_features + 1;
    is_intercept = TRUE;
}

ones_rec = matrix (1, rows = num_records, cols = 1);
linear_terms = X %*% beta + ones_rec %*% intercept;
[means, vars] =
    glm_means_and_vars (linear_terms, dist_type, var_power, link_type, link_power);
    
if (fileM != " ") {
    write (means, fileM, format=fmtM);
}

if (fileY != " ")
{
    Y = read (fileY);
    ones_ctg = matrix (1, rows = ncol(Y), cols = 1);
    
    # Statistics To Compute:
    
    Z_logl               = 0.0 / 0.0;
    Z_logl_pValue        = 0.0 / 0.0;
    X2_pearson           = 0.0 / 0.0;
    df_pearson           = -1;
    G2_deviance          = 0.0 / 0.0;
    df_deviance          = -1;
    X2_pearson_pValue    = 0.0 / 0.0;
    G2_deviance_pValue   = 0.0 / 0.0;
    Z_logl_scaled        = 0.0 / 0.0;
    Z_logl_scaled_pValue = 0.0 / 0.0;
    X2_scaled            = 0.0 / 0.0;
    X2_scaled_pValue     = 0.0 / 0.0;
    G2_scaled            = 0.0 / 0.0;
    G2_scaled_pValue     = 0.0 / 0.0;
    
    # set Y_counts to avoid 'Initialization of Y_counts depends on if-else execution' warning
    Y_counts = matrix(0.0, rows=1, cols=1);

    if (dist_type == 1 & link_type == 1) {
    #
    # POWER DISTRIBUTIONS (GAUSSIAN, POISSON, GAMMA, ETC.)
    #
        if (link_power == 0) {
            is_zero_Y = (Y == 0);
            lt_saturated = log (Y + is_zero_Y) - is_zero_Y / (1.0 - is_zero_Y);
        } else {
            lt_saturated = Y ^ link_power;
        }
        Y_counts = ones_rec;

        X2_pearson = sum ((Y - means) ^ 2 / vars);
        df_pearson = num_records - num_features;

        log_l_part = 
            glm_partial_loglikelihood_for_power_dist_and_link (linear_terms, Y, var_power, link_power);
        log_l_part_saturated = 
            glm_partial_loglikelihood_for_power_dist_and_link (lt_saturated, Y, var_power, link_power);
            
        G2_deviance = 2 * sum (log_l_part_saturated) - 2 * sum (log_l_part);
        df_deviance = num_records - num_features;
        
    } else { if (dist_type >= 2) {
    #
    # BINOMIAL AND MULTINOMIAL DISTRIBUTIONS
    #
        if (ncol (Y) == 1) {
            num_categories = ncol (beta) + 1;
            if (min (Y) <= 0) { 
                # Category labels "0", "-1" etc. are converted into the baseline label
                Y = Y + (- Y + num_categories) * (Y <= 0);
            }
            Y_size = min (num_categories, max(Y));
            Y_unsized = table (seq (1, num_records, 1), Y);
            Y = matrix (0, rows = num_records, cols = num_categories);
            Y [, 1 : Y_size] = Y_unsized [, 1 : Y_size];
            Y_counts = ones_rec;
        } else {
            Y_counts = rowSums (Y);
        }
        
        P = means;
        zero_Y = (Y == 0);
        zero_P = (P == 0);
        ones_ctg = matrix (1, rows = ncol(Y), cols = 1);
        
        logl_vec = rowSums (Y *  log (P + zero_Y)   );
        ent1_vec = rowSums (P *  log (P + zero_P)   );
        ent2_vec = rowSums (P * (log (P + zero_P))^2);
        E_logl   = sum (Y_counts * ent1_vec);
        V_logl   = sum (Y_counts * (ent2_vec - ent1_vec ^ 2));
        Z_logl   = (sum (logl_vec) - E_logl) / sqrt (V_logl);
        
        means = means * (Y_counts %*% t(ones_ctg));
        vars  = vars  * (Y_counts %*% t(ones_ctg));
        
        frac_below_5 = sum (means < 5) / (nrow (means) * ncol (means));
        frac_below_1 = sum (means < 1) / (nrow (means) * ncol (means));
        
        if (frac_below_5 > 0.2 | frac_below_1 > 0) {
            print ("WARNING: residual statistics are inaccurate here due to low cell means.");
        }
        
        X2_pearson = sum ((Y - means) ^ 2 / means);
        df_pearson = (num_records - num_features) * (ncol(Y) - 1);
        
        G2_deviance = 2 * sum (Y * log ((Y + zero_Y) / (means + zero_Y)));
        df_deviance = (num_records - num_features) * (ncol(Y) - 1);
    }}
    
    if (Z_logl == Z_logl) {
        Z_logl_absneg = - abs (Z_logl);
        Z_logl_pValue = 2.0 * pnorm(target = Z_logl_absneg);
    }
    if (X2_pearson == X2_pearson & df_pearson > 0) {
        X2_pearson_pValue = pchisq(target = X2_pearson, df = df_pearson, lower.tail=FALSE);
    }
    if (G2_deviance == G2_deviance & df_deviance > 0) {
        G2_deviance_pValue = pchisq(target = G2_deviance, df = df_deviance, lower.tail=FALSE);
    }
    
    Z_logl_scaled = Z_logl / sqrt (dispersion);
    X2_scaled = X2_pearson / dispersion;
    G2_scaled = G2_deviance / dispersion;

    if (Z_logl_scaled == Z_logl_scaled) {
        Z_logl_scaled_absneg = - abs (Z_logl_scaled);
        Z_logl_scaled_pValue = 2.0 * pnorm(target = Z_logl_scaled_absneg);
    }
    if (X2_scaled == X2_scaled & df_pearson > 0) {
        X2_scaled_pValue = pchisq(target = X2_scaled, df = df_pearson, lower.tail=FALSE);
    }
    if (G2_scaled == G2_scaled & df_deviance > 0) {
        G2_scaled_pValue = pchisq(target = G2_scaled, df = df_deviance, lower.tail=FALSE);
    }
    
    avg_tot_Y = colSums (    Y    ) / sum (Y_counts);
    avg_res_Y = colSums (Y - means) / sum (Y_counts);
    
    ss_avg_tot_Y = colSums ((    Y     - Y_counts %*% avg_tot_Y) ^ 2);
    ss_res_Y     = colSums ((Y - means) ^ 2);
    ss_avg_res_Y = colSums ((Y - means - Y_counts %*% avg_res_Y) ^ 2);
    
    df_ss_res_Y  = sum (Y_counts) - num_features;
    if (is_intercept) {
        df_ss_avg_res_Y = df_ss_res_Y;
    } else {
        df_ss_avg_res_Y = df_ss_res_Y - 1;
    }
    
    var_tot_Y = ss_avg_tot_Y / (sum (Y_counts) - 1);
    if (df_ss_avg_res_Y > 0) {
        var_res_Y = ss_avg_res_Y / df_ss_avg_res_Y;
    } else {
        var_res_Y = matrix (0.0, rows = 1, cols = ncol (Y)) / 0.0;
    }
    plain_R2_nobias  = 1 - ss_avg_res_Y / ss_avg_tot_Y;
    adjust_R2_nobias = 1 - var_res_Y / var_tot_Y;
    plain_R2  = 1 - ss_res_Y / ss_avg_tot_Y;
    if (df_ss_res_Y > 0) {
        adjust_R2 = 1 - (ss_res_Y / df_ss_res_Y) / var_tot_Y;
    } else {
        adjust_R2 = matrix (0.0, rows = 1, cols = ncol (Y)) / 0.0;
    }
    
    predicted_avg_var_res_Y = dispersion * colSums (vars) / sum (Y_counts);
    
    # PREPARING THE OUTPUT CSV STATISTICS FILE
    
    str = "LOGLHOOD_Z,,FALSE," + Z_logl;
    str = append (str, "LOGLHOOD_Z_PVAL,,FALSE," + Z_logl_pValue);
    str = append (str, "PEARSON_X2,,FALSE," + X2_pearson);
    str = append (str, "PEARSON_X2_BY_DF,,FALSE," + (X2_pearson / df_pearson));
    str = append (str, "PEARSON_X2_PVAL,,FALSE," + X2_pearson_pValue);
    str = append (str, "DEVIANCE_G2,,FALSE," + G2_deviance);
    str = append (str, "DEVIANCE_G2_BY_DF,,FALSE," + (G2_deviance / df_deviance));
    str = append (str, "DEVIANCE_G2_PVAL,,FALSE," + G2_deviance_pValue);
    str = append (str, "LOGLHOOD_Z,,TRUE," + Z_logl_scaled);
    str = append (str, "LOGLHOOD_Z_PVAL,,TRUE," + Z_logl_scaled_pValue);
    str = append (str, "PEARSON_X2,,TRUE," + X2_scaled);
    str = append (str, "PEARSON_X2_BY_DF,,TRUE," + (X2_scaled / df_pearson));
    str = append (str, "PEARSON_X2_PVAL,,TRUE," + X2_scaled_pValue);
    str = append (str, "DEVIANCE_G2,,TRUE," + G2_scaled);
    str = append (str, "DEVIANCE_G2_BY_DF,,TRUE," + (G2_scaled / df_deviance));
    str = append (str, "DEVIANCE_G2_PVAL,,TRUE," + G2_scaled_pValue);

    for (i in 1:ncol(Y)) {
        str = append (str, "AVG_TOT_Y," + i + ",," + as.scalar (avg_tot_Y [1, i]));
        str = append (str, "STDEV_TOT_Y," + i + ",," + as.scalar (sqrt (var_tot_Y [1, i])));
        str = append (str, "AVG_RES_Y," + i + ",," + as.scalar (avg_res_Y [1, i]));
        str = append (str, "STDEV_RES_Y," + i + ",," + as.scalar (sqrt (var_res_Y [1, i])));
        str = append (str, "PRED_STDEV_RES," + i + ",TRUE," + as.scalar (sqrt (predicted_avg_var_res_Y [1, i])));
        str = append (str, "PLAIN_R2," + i + ",," + as.scalar (plain_R2 [1, i]));
        str = append (str, "ADJUSTED_R2," + i + ",," + as.scalar (adjust_R2 [1, i]));
        str = append (str, "PLAIN_R2_NOBIAS," + i + ",," + as.scalar (plain_R2_nobias [1, i]));
        str = append (str, "ADJUSTED_R2_NOBIAS," + i + ",," + as.scalar (adjust_R2_nobias [1, i]));
    }
    
    if (fileO != " ") {
        write (str, fileO);
    } else {
        print (str);
    }
}

glm_means_and_vars = 
    function (Matrix[double] linear_terms, int dist_type, double var_power, int link_type, double link_power)
    return (Matrix[double] means, Matrix[double] vars)
    # NOTE: "vars" represents the variance without dispersion, i.e. the V(mu) function.
{
    num_points = nrow (linear_terms);
    if (dist_type == 1 & link_type == 1) {
    # POWER DISTRIBUTION
        if          (link_power ==  0) {
            y_mean = exp (linear_terms);
        } else { if (link_power ==  1.0) {
            y_mean = linear_terms;
        } else { if (link_power == -1.0) {
            y_mean = 1.0 / linear_terms;
        } else {
            y_mean = linear_terms ^ (1.0 / link_power);
        }}}
        if (var_power == 0) {
            var_function = matrix (1.0, rows = num_points, cols = 1);
        } else { if (var_power == 1.0) {
            var_function = y_mean;
        } else {
            var_function = y_mean ^ var_power;
        }}
        means = y_mean;
        vars = var_function;
    } else { if (dist_type == 2 & link_type >= 1 & link_type <= 5) {
    # BINOMIAL/BERNOULLI DISTRIBUTION
        y_prob = matrix (0.0, rows = num_points, cols = 2);
        if          (link_type == 1 & link_power == 0)  { # Binomial.log
            y_prob [, 1]  = exp (linear_terms);
            y_prob [, 2]  = 1.0 - y_prob [, 1];
        } else { if (link_type == 1 & link_power != 0)  { # Binomial.power_nonlog
            y_prob [, 1]  = linear_terms ^ (1.0 / link_power);
            y_prob [, 2]  = 1.0 - y_prob [, 1];
        } else { if (link_type == 2)                      { # Binomial.logit
            elt = exp (linear_terms);
            y_prob [, 1]  = elt / (1.0 + elt);
            y_prob [, 2]  = 1.0 / (1.0 + elt);
        } else { if (link_type == 3)                      { # Binomial.probit
            sign_lt = 2 * (linear_terms >= 0) - 1;
            t_gp = 1.0 / (1.0 + abs (linear_terms) * 0.231641888);  # 0.231641888 = 0.3275911 / sqrt (2.0)
            erf_corr =
                t_gp * ( 0.254829592 
              + t_gp * (-0.284496736 # "Handbook of Mathematical Functions", ed. by M. Abramowitz and I.A. Stegun,
              + t_gp * ( 1.421413741 # U.S. Nat-l Bureau of Standards, 10th print (Dec 1972), Sec. 7.1.26, p. 299
              + t_gp * (-1.453152027 
              + t_gp *   1.061405429)))) * sign_lt * exp (- (linear_terms ^ 2) / 2.0);
            y_prob [, 1] = (1 + sign_lt) - erf_corr;
            y_prob [, 2] = (1 - sign_lt) + erf_corr;
            y_prob = y_prob / 2;
        } else { if (link_type == 4)                      { # Binomial.cloglog
            elt = exp (linear_terms);
            is_too_small = ((10000000 + elt) == 10000000);
            y_prob [, 2] = exp (- elt);
            y_prob [, 1] = (1 - is_too_small) * (1.0 - y_prob [, 2]) + is_too_small * elt * (1.0 - elt / 2);
        } else { if (link_type == 5)                      { # Binomial.cauchit
            atan_linear_terms = atan (linear_terms);
            y_prob [, 1] = 0.5 + atan_linear_terms / 3.1415926535897932384626433832795;
            y_prob [, 2] = 0.5 - atan_linear_terms / 3.1415926535897932384626433832795;
        }}}}}}
        means = y_prob;
        ones_ctg = matrix (1, rows = 2, cols = 1);
        vars  = means * (means %*% (1 - diag (ones_ctg)));
    } else { if (dist_type == 3) {
    # MULTINOMIAL LOGIT DISTRIBUTION
        elt = exp (linear_terms);
        ones_pts = matrix (1, rows = num_points, cols = 1);
        elt = append (elt, ones_pts);
        ones_ctg = matrix (1, rows = ncol (elt), cols = 1);
        means = elt / (rowSums (elt) %*% t(ones_ctg));
        vars  = means * (means %*% (1 - diag (ones_ctg)));
    } else {
        means = matrix (0.0, rows = num_points, cols = 1);
        vars  = matrix (0.0, rows = num_points, cols = 1);
}   }}}

glm_partial_loglikelihood_for_power_dist_and_link =   # Assumes: dist_type == 1 & link_type == 1
    function (Matrix[double] linear_terms, Matrix[double] Y, double var_power, double link_power)
    return (Matrix[double] log_l_part)
{
    num_records = nrow (Y);
    if (var_power == 1.0) { # Poisson
        if (link_power == 0)  { # Poisson.log
            is_natural_parameter_log_zero = (linear_terms == -1.0/0.0);
            natural_parameters = replace (target = linear_terms, pattern = -1.0/0.0, replacement = 0);
            b_cumulant = exp (linear_terms);
        } else {                  # Poisson.power_nonlog
            is_natural_parameter_log_zero = (linear_terms == 0);
            natural_parameters = log (linear_terms + is_natural_parameter_log_zero) / link_power;
            b_cumulant = (linear_terms + is_natural_parameter_log_zero) ^ (1.0 / link_power) - is_natural_parameter_log_zero;
        }
        is_minus_infinity = (Y > 0) * is_natural_parameter_log_zero;
        log_l_part = Y * natural_parameters - b_cumulant - is_minus_infinity / (1 - is_minus_infinity);
    } else {
        if (var_power == 2.0 & link_power == 0)  { # Gamma.log
            natural_parameters = - exp (- linear_terms);
            b_cumulant = linear_terms;
        } else { if (var_power == 2.0)  { # Gamma.power_nonlog
            natural_parameters = - linear_terms ^ (- 1.0 / link_power);
            b_cumulant = log (linear_terms) / link_power;
        } else { if (link_power == 0) { # PowerDist.log
            natural_parameters = exp (linear_terms * (1.0 - var_power)) / (1.0 - var_power);
            b_cumulant = exp (linear_terms * (2.0 - var_power)) / (2.0 - var_power);
        } else {                          # PowerDist.power_nonlog
            power_np = (1.0 - var_power) / link_power;
            natural_parameters = (linear_terms ^ power_np) / (1.0 - var_power);
            power_cu = (2.0 - var_power) / link_power;
            b_cumulant = (linear_terms ^ power_cu) / (2.0 - var_power);
        }}}
        log_l_part = Y * natural_parameters - b_cumulant;
}   }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy