org.bouncycastle.crypto.engines.RC564Engine Maven / Gradle / Ivy
Show all versions of bcprov-jdk15to18 Show documentation
package org.bouncycastle.crypto.engines;
import org.bouncycastle.crypto.BlockCipher;
import org.bouncycastle.crypto.CipherParameters;
import org.bouncycastle.crypto.params.RC5Parameters;
/**
* The specification for RC5 came from the RC5 Encryption Algorithm
* publication in RSA CryptoBytes, Spring of 1995.
* https://www.rsasecurity.com/rsalabs/cryptobytes.
*
* This implementation is set to work with a 64 bit word size.
*
* Implementation courtesy of Tito Pena.
*/
public class RC564Engine
implements BlockCipher
{
private static final int wordSize = 64;
private static final int bytesPerWord = wordSize / 8;
/*
* the number of rounds to perform
*/
private int _noRounds;
/*
* the expanded key array of size 2*(rounds + 1)
*/
private long _S[];
/*
* our "magic constants" for wordSize 62
*
* Pw = Odd((e-2) * 2^wordsize)
* Qw = Odd((o-2) * 2^wordsize)
*
* where e is the base of natural logarithms (2.718281828...)
* and o is the golden ratio (1.61803398...)
*/
private static final long P64 = 0xb7e151628aed2a6bL;
private static final long Q64 = 0x9e3779b97f4a7c15L;
private boolean forEncryption;
/**
* Create an instance of the RC5 encryption algorithm
* and set some defaults
*/
public RC564Engine()
{
_noRounds = 12;
_S = null;
}
public String getAlgorithmName()
{
return "RC5-64";
}
public int getBlockSize()
{
return 2 * bytesPerWord;
}
/**
* initialise a RC5-64 cipher.
*
* @param forEncryption whether or not we are for encryption.
* @param params the parameters required to set up the cipher.
* @exception IllegalArgumentException if the params argument is
* inappropriate.
*/
public void init(
boolean forEncryption,
CipherParameters params)
{
if (!(params instanceof RC5Parameters))
{
throw new IllegalArgumentException("invalid parameter passed to RC564 init - " + params.getClass().getName());
}
RC5Parameters p = (RC5Parameters)params;
this.forEncryption = forEncryption;
_noRounds = p.getRounds();
setKey(p.getKey());
}
public int processBlock(
byte[] in,
int inOff,
byte[] out,
int outOff)
{
return (forEncryption) ? encryptBlock(in, inOff, out, outOff)
: decryptBlock(in, inOff, out, outOff);
}
public void reset()
{
}
/**
* Re-key the cipher.
*
* @param key the key to be used
*/
private void setKey(
byte[] key)
{
//
// KEY EXPANSION:
//
// There are 3 phases to the key expansion.
//
// Phase 1:
// Copy the secret key K[0...b-1] into an array L[0..c-1] of
// c = ceil(b/u), where u = wordSize/8 in little-endian order.
// In other words, we fill up L using u consecutive key bytes
// of K. Any unfilled byte positions in L are zeroed. In the
// case that b = c = 0, set c = 1 and L[0] = 0.
//
long[] L = new long[(key.length + (bytesPerWord - 1)) / bytesPerWord];
for (int i = 0; i != key.length; i++)
{
L[i / bytesPerWord] += (long)(key[i] & 0xff) << (8 * (i % bytesPerWord));
}
//
// Phase 2:
// Initialize S to a particular fixed pseudo-random bit pattern
// using an arithmetic progression modulo 2^wordsize determined
// by the magic numbers, Pw & Qw.
//
_S = new long[2*(_noRounds + 1)];
_S[0] = P64;
for (int i=1; i < _S.length; i++)
{
_S[i] = (_S[i-1] + Q64);
}
//
// Phase 3:
// Mix in the user's secret key in 3 passes over the arrays S & L.
// The max of the arrays sizes is used as the loop control
//
int iter;
if (L.length > _S.length)
{
iter = 3 * L.length;
}
else
{
iter = 3 * _S.length;
}
long A = 0, B = 0;
int i = 0, j = 0;
for (int k = 0; k < iter; k++)
{
A = _S[i] = rotateLeft(_S[i] + A + B, 3);
B = L[j] = rotateLeft(L[j] + A + B, A+B);
i = (i+1) % _S.length;
j = (j+1) % L.length;
}
}
/**
* Encrypt the given block starting at the given offset and place
* the result in the provided buffer starting at the given offset.
*
* @param in in byte buffer containing data to encrypt
* @param inOff offset into src buffer
* @param out out buffer where encrypted data is written
* @param outOff offset into out buffer
*/
private int encryptBlock(
byte[] in,
int inOff,
byte[] out,
int outOff)
{
long A = bytesToWord(in, inOff) + _S[0];
long B = bytesToWord(in, inOff + bytesPerWord) + _S[1];
for (int i = 1; i <= _noRounds; i++)
{
A = rotateLeft(A ^ B, B) + _S[2*i];
B = rotateLeft(B ^ A, A) + _S[2*i+1];
}
wordToBytes(A, out, outOff);
wordToBytes(B, out, outOff + bytesPerWord);
return 2 * bytesPerWord;
}
private int decryptBlock(
byte[] in,
int inOff,
byte[] out,
int outOff)
{
long A = bytesToWord(in, inOff);
long B = bytesToWord(in, inOff + bytesPerWord);
for (int i = _noRounds; i >= 1; i--)
{
B = rotateRight(B - _S[2*i+1], A) ^ A;
A = rotateRight(A - _S[2*i], B) ^ B;
}
wordToBytes(A - _S[0], out, outOff);
wordToBytes(B - _S[1], out, outOff + bytesPerWord);
return 2 * bytesPerWord;
}
//////////////////////////////////////////////////////////////
//
// PRIVATE Helper Methods
//
//////////////////////////////////////////////////////////////
/**
* Perform a left "spin" of the word. The rotation of the given
* word x is rotated left by y bits.
* Only the lg(wordSize) low-order bits of y
* are used to determine the rotation amount. Here it is
* assumed that the wordsize used is a power of 2.
*
* @param x word to rotate
* @param y number of bits to rotate % wordSize
*/
private long rotateLeft(long x, long y)
{
return ((x << (y & (wordSize-1))) | (x >>> (wordSize - (y & (wordSize-1)))));
}
/**
* Perform a right "spin" of the word. The rotation of the given
* word x is rotated left by y bits.
* Only the lg(wordSize) low-order bits of y
* are used to determine the rotation amount. Here it is
* assumed that the wordsize used is a power of 2.
*
* @param x word to rotate
* @param y number of bits to rotate % wordSize
*/
private long rotateRight(long x, long y)
{
return ((x >>> (y & (wordSize-1))) | (x << (wordSize - (y & (wordSize-1)))));
}
private long bytesToWord(
byte[] src,
int srcOff)
{
long word = 0;
for (int i = bytesPerWord - 1; i >= 0; i--)
{
word = (word << 8) + (src[i + srcOff] & 0xff);
}
return word;
}
private void wordToBytes(
long word,
byte[] dst,
int dstOff)
{
for (int i = 0; i < bytesPerWord; i++)
{
dst[i + dstOff] = (byte)word;
word >>>= 8;
}
}
}