All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.crypto.engines.ThreefishEngine Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5 to JDK 1.8.

There is a newer version: 1.79
Show newest version
package org.bouncycastle.crypto.engines;

import org.bouncycastle.crypto.BlockCipher;
import org.bouncycastle.crypto.CipherParameters;
import org.bouncycastle.crypto.DataLengthException;
import org.bouncycastle.crypto.OutputLengthException;
import org.bouncycastle.crypto.params.KeyParameter;
import org.bouncycastle.crypto.params.TweakableBlockCipherParameters;

/**
 * Implementation of the Threefish tweakable large block cipher in 256, 512 and 1024 bit block
 * sizes.
 * 

* This is the 1.3 version of Threefish defined in the Skein hash function submission to the NIST * SHA-3 competition in October 2010. *

* Threefish was designed by Niels Ferguson - Stefan Lucks - Bruce Schneier - Doug Whiting - Mihir * Bellare - Tadayoshi Kohno - Jon Callas - Jesse Walker. *

* This implementation inlines all round functions, unrolls 8 rounds, and uses 1.2k of static tables * to speed up key schedule injection.
* 2 x block size state is retained by each cipher instance. */ public class ThreefishEngine implements BlockCipher { /** * 256 bit block size - Threefish-256 */ public static final int BLOCKSIZE_256 = 256; /** * 512 bit block size - Threefish-512 */ public static final int BLOCKSIZE_512 = 512; /** * 1024 bit block size - Threefish-1024 */ public static final int BLOCKSIZE_1024 = 1024; /** * Size of the tweak in bytes (always 128 bit/16 bytes) */ private static final int TWEAK_SIZE_BYTES = 16; private static final int TWEAK_SIZE_WORDS = TWEAK_SIZE_BYTES / 8; /** * Rounds in Threefish-256 */ private static final int ROUNDS_256 = 72; /** * Rounds in Threefish-512 */ private static final int ROUNDS_512 = 72; /** * Rounds in Threefish-1024 */ private static final int ROUNDS_1024 = 80; /** * Max rounds of any of the variants */ private static final int MAX_ROUNDS = ROUNDS_1024; /** * Key schedule parity constant */ private static final long C_240 = 0x1BD11BDAA9FC1A22L; /* Pre-calculated modulo arithmetic tables for key schedule lookups */ private static int[] MOD9 = new int[MAX_ROUNDS]; private static int[] MOD17 = new int[MOD9.length]; private static int[] MOD5 = new int[MOD9.length]; private static int[] MOD3 = new int[MOD9.length]; static { for (int i = 0; i < MOD9.length; i++) { MOD17[i] = i % 17; MOD9[i] = i % 9; MOD5[i] = i % 5; MOD3[i] = i % 3; } } /** * Block size in bytes */ private int blocksizeBytes; /** * Block size in 64 bit words */ private int blocksizeWords; /** * Buffer for byte oriented processBytes to call internal word API */ private long[] currentBlock; /** * Tweak bytes (2 byte t1,t2, calculated t3 and repeat of t1,t2 for modulo free lookup */ private long[] t = new long[5]; /** * Key schedule words */ private long[] kw; /** * The internal cipher implementation (varies by blocksize) */ private ThreefishCipher cipher; private boolean forEncryption; /** * Constructs a new Threefish cipher, with a specified block size. * * @param blocksizeBits the block size in bits, one of {@link #BLOCKSIZE_256}, {@link #BLOCKSIZE_512}, * {@link #BLOCKSIZE_1024}. */ public ThreefishEngine(final int blocksizeBits) { this.blocksizeBytes = (blocksizeBits / 8); this.blocksizeWords = (this.blocksizeBytes / 8); this.currentBlock = new long[blocksizeWords]; /* * Provide room for original key words, extended key word and repeat of key words for modulo * free lookup of key schedule words. */ this.kw = new long[2 * blocksizeWords + 1]; switch (blocksizeBits) { case BLOCKSIZE_256: cipher = new Threefish256Cipher(kw, t); break; case BLOCKSIZE_512: cipher = new Threefish512Cipher(kw, t); break; case BLOCKSIZE_1024: cipher = new Threefish1024Cipher(kw, t); break; default: throw new IllegalArgumentException( "Invalid blocksize - Threefish is defined with block size of 256, 512, or 1024 bits"); } } /** * Initialise the engine. * * @param params an instance of {@link TweakableBlockCipherParameters}, or {@link KeyParameter} (to * use a 0 tweak) */ public void init(boolean forEncryption, CipherParameters params) throws IllegalArgumentException { final byte[] keyBytes; final byte[] tweakBytes; if (params instanceof TweakableBlockCipherParameters) { TweakableBlockCipherParameters tParams = (TweakableBlockCipherParameters)params; keyBytes = tParams.getKey().getKey(); tweakBytes = tParams.getTweak(); } else if (params instanceof KeyParameter) { keyBytes = ((KeyParameter)params).getKey(); tweakBytes = null; } else { throw new IllegalArgumentException("Invalid parameter passed to Threefish init - " + params.getClass().getName()); } long[] keyWords = null; long[] tweakWords = null; if (keyBytes != null) { if (keyBytes.length != this.blocksizeBytes) { throw new IllegalArgumentException("Threefish key must be same size as block (" + blocksizeBytes + " bytes)"); } keyWords = new long[blocksizeWords]; for (int i = 0; i < keyWords.length; i++) { keyWords[i] = bytesToWord(keyBytes, i * 8); } } if (tweakBytes != null) { if (tweakBytes.length != TWEAK_SIZE_BYTES) { throw new IllegalArgumentException("Threefish tweak must be " + TWEAK_SIZE_BYTES + " bytes"); } tweakWords = new long[]{bytesToWord(tweakBytes, 0), bytesToWord(tweakBytes, 8)}; } init(forEncryption, keyWords, tweakWords); } /** * Initialise the engine, specifying the key and tweak directly. * * @param forEncryption the cipher mode. * @param key the words of the key, or null to use the current key. * @param tweak the 2 word (128 bit) tweak, or null to use the current tweak. */ public void init(boolean forEncryption, final long[] key, final long[] tweak) { this.forEncryption = forEncryption; if (key != null) { setKey(key); } if (tweak != null) { setTweak(tweak); } } private void setKey(long[] key) { if (key.length != this.blocksizeWords) { throw new IllegalArgumentException("Threefish key must be same size as block (" + blocksizeWords + " words)"); } /* * Full subkey schedule is deferred to execution to avoid per cipher overhead (10k for 512, * 20k for 1024). * * Key and tweak word sequences are repeated, and static MOD17/MOD9/MOD5/MOD3 calculations * used, to avoid expensive mod computations during cipher operation. */ long knw = C_240; for (int i = 0; i < blocksizeWords; i++) { kw[i] = key[i]; knw = knw ^ kw[i]; } kw[blocksizeWords] = knw; System.arraycopy(kw, 0, kw, blocksizeWords + 1, blocksizeWords); } private void setTweak(long[] tweak) { if (tweak.length != TWEAK_SIZE_WORDS) { throw new IllegalArgumentException("Tweak must be " + TWEAK_SIZE_WORDS + " words."); } /* * Tweak schedule partially repeated to avoid mod computations during cipher operation */ t[0] = tweak[0]; t[1] = tweak[1]; t[2] = t[0] ^ t[1]; t[3] = t[0]; t[4] = t[1]; } public String getAlgorithmName() { return "Threefish-" + (blocksizeBytes * 8); } public int getBlockSize() { return blocksizeBytes; } public void reset() { } public int processBlock(byte[] in, int inOff, byte[] out, int outOff) throws DataLengthException, IllegalStateException { if ((inOff + blocksizeBytes) > in.length) { throw new DataLengthException("Input buffer too short"); } if ((outOff + blocksizeBytes) > out.length) { throw new OutputLengthException("Output buffer too short"); } for (int i = 0; i < blocksizeBytes; i += 8) { currentBlock[i >> 3] = bytesToWord(in, inOff + i); } processBlock(this.currentBlock, this.currentBlock); for (int i = 0; i < blocksizeBytes; i += 8) { wordToBytes(this.currentBlock[i >> 3], out, outOff + i); } return blocksizeBytes; } /** * Process a block of data represented as 64 bit words. * * @param in a block sized buffer of words to process. * @param out a block sized buffer of words to receive the output of the operation. * @return the number of 8 byte words processed (which will be the same as the block size). * @throws DataLengthException if either the input or output is not block sized. * @throws IllegalStateException if this engine is not initialised. */ public int processBlock(long[] in, long[] out) throws DataLengthException, IllegalStateException { if (kw[blocksizeWords] == 0) { throw new IllegalStateException("Threefish engine not initialised"); } if (in.length != blocksizeWords) { throw new DataLengthException("Input buffer too short"); } if (out.length != blocksizeWords) { throw new OutputLengthException("Output buffer too short"); } if (forEncryption) { cipher.encryptBlock(in, out); } else { cipher.decryptBlock(in, out); } return blocksizeWords; } /** * Read a single 64 bit word from input in LSB first order. */ // At least package protected for efficient access from inner class public static long bytesToWord(final byte[] bytes, final int off) { if ((off + 8) > bytes.length) { // Help the JIT avoid index checks throw new IllegalArgumentException(); } long word = 0; int index = off; word = (bytes[index++] & 0xffL); word |= (bytes[index++] & 0xffL) << 8; word |= (bytes[index++] & 0xffL) << 16; word |= (bytes[index++] & 0xffL) << 24; word |= (bytes[index++] & 0xffL) << 32; word |= (bytes[index++] & 0xffL) << 40; word |= (bytes[index++] & 0xffL) << 48; word |= (bytes[index++] & 0xffL) << 56; return word; } /** * Write a 64 bit word to output in LSB first order. */ // At least package protected for efficient access from inner class public static void wordToBytes(final long word, final byte[] bytes, final int off) { if ((off + 8) > bytes.length) { // Help the JIT avoid index checks throw new IllegalArgumentException(); } int index = off; bytes[index++] = (byte)word; bytes[index++] = (byte)(word >> 8); bytes[index++] = (byte)(word >> 16); bytes[index++] = (byte)(word >> 24); bytes[index++] = (byte)(word >> 32); bytes[index++] = (byte)(word >> 40); bytes[index++] = (byte)(word >> 48); bytes[index++] = (byte)(word >> 56); } /** * Rotate left + xor part of the mix operation. */ // Package protected for efficient access from inner class static long rotlXor(long x, int n, long xor) { return ((x << n) | (x >>> -n)) ^ xor; } /** * Rotate xor + rotate right part of the unmix operation. */ // Package protected for efficient access from inner class static long xorRotr(long x, int n, long xor) { long xored = x ^ xor; return (xored >>> n) | (xored << -n); } private static abstract class ThreefishCipher { /** * The extended + repeated tweak words */ protected final long[] t; /** * The extended + repeated key words */ protected final long[] kw; protected ThreefishCipher(final long[] kw, final long[] t) { this.kw = kw; this.t = t; } abstract void encryptBlock(long[] block, long[] out); abstract void decryptBlock(long[] block, long[] out); } private static final class Threefish256Cipher extends ThreefishCipher { /** * Mix rotation constants defined in Skein 1.3 specification */ private static final int ROTATION_0_0 = 14, ROTATION_0_1 = 16; private static final int ROTATION_1_0 = 52, ROTATION_1_1 = 57; private static final int ROTATION_2_0 = 23, ROTATION_2_1 = 40; private static final int ROTATION_3_0 = 5, ROTATION_3_1 = 37; private static final int ROTATION_4_0 = 25, ROTATION_4_1 = 33; private static final int ROTATION_5_0 = 46, ROTATION_5_1 = 12; private static final int ROTATION_6_0 = 58, ROTATION_6_1 = 22; private static final int ROTATION_7_0 = 32, ROTATION_7_1 = 32; public Threefish256Cipher(long[] kw, long[] t) { super(kw, t); } void encryptBlock(long[] block, long[] out) { final long[] kw = this.kw; final long[] t = this.t; final int[] mod5 = MOD5; final int[] mod3 = MOD3; /* Help the JIT avoid index bounds checks */ if (kw.length != 9) { throw new IllegalArgumentException(); } if (t.length != 5) { throw new IllegalArgumentException(); } /* * Read 4 words of plaintext data, not using arrays for cipher state */ long b0 = block[0]; long b1 = block[1]; long b2 = block[2]; long b3 = block[3]; /* * First subkey injection. */ b0 += kw[0]; b1 += kw[1] + t[0]; b2 += kw[2] + t[1]; b3 += kw[3]; /* * Rounds loop, unrolled to 8 rounds per iteration. * * Unrolling to multiples of 4 avoids the mod 4 check for key injection, and allows * inlining of the permutations, which cycle every of 2 rounds (avoiding array * index/lookup). * * Unrolling to multiples of 8 avoids the mod 8 rotation constant lookup, and allows * inlining constant rotation values (avoiding array index/lookup). */ for (int d = 1; d < (ROUNDS_256 / 4); d += 2) { final int dm5 = mod5[d]; final int dm3 = mod3[d]; /* * 4 rounds of mix and permute. * * Permute schedule has a 2 round cycle, so permutes are inlined in the mix * operations in each 4 round block. */ b1 = rotlXor(b1, ROTATION_0_0, b0 += b1); b3 = rotlXor(b3, ROTATION_0_1, b2 += b3); b3 = rotlXor(b3, ROTATION_1_0, b0 += b3); b1 = rotlXor(b1, ROTATION_1_1, b2 += b1); b1 = rotlXor(b1, ROTATION_2_0, b0 += b1); b3 = rotlXor(b3, ROTATION_2_1, b2 += b3); b3 = rotlXor(b3, ROTATION_3_0, b0 += b3); b1 = rotlXor(b1, ROTATION_3_1, b2 += b1); /* * Subkey injection for first 4 rounds. */ b0 += kw[dm5]; b1 += kw[dm5 + 1] + t[dm3]; b2 += kw[dm5 + 2] + t[dm3 + 1]; b3 += kw[dm5 + 3] + d; /* * 4 more rounds of mix/permute */ b1 = rotlXor(b1, ROTATION_4_0, b0 += b1); b3 = rotlXor(b3, ROTATION_4_1, b2 += b3); b3 = rotlXor(b3, ROTATION_5_0, b0 += b3); b1 = rotlXor(b1, ROTATION_5_1, b2 += b1); b1 = rotlXor(b1, ROTATION_6_0, b0 += b1); b3 = rotlXor(b3, ROTATION_6_1, b2 += b3); b3 = rotlXor(b3, ROTATION_7_0, b0 += b3); b1 = rotlXor(b1, ROTATION_7_1, b2 += b1); /* * Subkey injection for next 4 rounds. */ b0 += kw[dm5 + 1]; b1 += kw[dm5 + 2] + t[dm3 + 1]; b2 += kw[dm5 + 3] + t[dm3 + 2]; b3 += kw[dm5 + 4] + d + 1; } /* * Output cipher state. */ out[0] = b0; out[1] = b1; out[2] = b2; out[3] = b3; } void decryptBlock(long[] block, long[] state) { final long[] kw = this.kw; final long[] t = this.t; final int[] mod5 = MOD5; final int[] mod3 = MOD3; /* Help the JIT avoid index bounds checks */ if (kw.length != 9) { throw new IllegalArgumentException(); } if (t.length != 5) { throw new IllegalArgumentException(); } long b0 = block[0]; long b1 = block[1]; long b2 = block[2]; long b3 = block[3]; for (int d = (ROUNDS_256 / 4) - 1; d >= 1; d -= 2) { final int dm5 = mod5[d]; final int dm3 = mod3[d]; /* Reverse key injection for second 4 rounds */ b0 -= kw[dm5 + 1]; b1 -= kw[dm5 + 2] + t[dm3 + 1]; b2 -= kw[dm5 + 3] + t[dm3 + 2]; b3 -= kw[dm5 + 4] + d + 1; /* Reverse second 4 mix/permute rounds */ b3 = xorRotr(b3, ROTATION_7_0, b0); b0 -= b3; b1 = xorRotr(b1, ROTATION_7_1, b2); b2 -= b1; b1 = xorRotr(b1, ROTATION_6_0, b0); b0 -= b1; b3 = xorRotr(b3, ROTATION_6_1, b2); b2 -= b3; b3 = xorRotr(b3, ROTATION_5_0, b0); b0 -= b3; b1 = xorRotr(b1, ROTATION_5_1, b2); b2 -= b1; b1 = xorRotr(b1, ROTATION_4_0, b0); b0 -= b1; b3 = xorRotr(b3, ROTATION_4_1, b2); b2 -= b3; /* Reverse key injection for first 4 rounds */ b0 -= kw[dm5]; b1 -= kw[dm5 + 1] + t[dm3]; b2 -= kw[dm5 + 2] + t[dm3 + 1]; b3 -= kw[dm5 + 3] + d; /* Reverse first 4 mix/permute rounds */ b3 = xorRotr(b3, ROTATION_3_0, b0); b0 -= b3; b1 = xorRotr(b1, ROTATION_3_1, b2); b2 -= b1; b1 = xorRotr(b1, ROTATION_2_0, b0); b0 -= b1; b3 = xorRotr(b3, ROTATION_2_1, b2); b2 -= b3; b3 = xorRotr(b3, ROTATION_1_0, b0); b0 -= b3; b1 = xorRotr(b1, ROTATION_1_1, b2); b2 -= b1; b1 = xorRotr(b1, ROTATION_0_0, b0); b0 -= b1; b3 = xorRotr(b3, ROTATION_0_1, b2); b2 -= b3; } /* * First subkey uninjection. */ b0 -= kw[0]; b1 -= kw[1] + t[0]; b2 -= kw[2] + t[1]; b3 -= kw[3]; /* * Output cipher state. */ state[0] = b0; state[1] = b1; state[2] = b2; state[3] = b3; } } private static final class Threefish512Cipher extends ThreefishCipher { /** * Mix rotation constants defined in Skein 1.3 specification */ private static final int ROTATION_0_0 = 46, ROTATION_0_1 = 36, ROTATION_0_2 = 19, ROTATION_0_3 = 37; private static final int ROTATION_1_0 = 33, ROTATION_1_1 = 27, ROTATION_1_2 = 14, ROTATION_1_3 = 42; private static final int ROTATION_2_0 = 17, ROTATION_2_1 = 49, ROTATION_2_2 = 36, ROTATION_2_3 = 39; private static final int ROTATION_3_0 = 44, ROTATION_3_1 = 9, ROTATION_3_2 = 54, ROTATION_3_3 = 56; private static final int ROTATION_4_0 = 39, ROTATION_4_1 = 30, ROTATION_4_2 = 34, ROTATION_4_3 = 24; private static final int ROTATION_5_0 = 13, ROTATION_5_1 = 50, ROTATION_5_2 = 10, ROTATION_5_3 = 17; private static final int ROTATION_6_0 = 25, ROTATION_6_1 = 29, ROTATION_6_2 = 39, ROTATION_6_3 = 43; private static final int ROTATION_7_0 = 8, ROTATION_7_1 = 35, ROTATION_7_2 = 56, ROTATION_7_3 = 22; protected Threefish512Cipher(long[] kw, long[] t) { super(kw, t); } public void encryptBlock(long[] block, long[] out) { final long[] kw = this.kw; final long[] t = this.t; final int[] mod9 = MOD9; final int[] mod3 = MOD3; /* Help the JIT avoid index bounds checks */ if (kw.length != 17) { throw new IllegalArgumentException(); } if (t.length != 5) { throw new IllegalArgumentException(); } /* * Read 8 words of plaintext data, not using arrays for cipher state */ long b0 = block[0]; long b1 = block[1]; long b2 = block[2]; long b3 = block[3]; long b4 = block[4]; long b5 = block[5]; long b6 = block[6]; long b7 = block[7]; /* * First subkey injection. */ b0 += kw[0]; b1 += kw[1]; b2 += kw[2]; b3 += kw[3]; b4 += kw[4]; b5 += kw[5] + t[0]; b6 += kw[6] + t[1]; b7 += kw[7]; /* * Rounds loop, unrolled to 8 rounds per iteration. * * Unrolling to multiples of 4 avoids the mod 4 check for key injection, and allows * inlining of the permutations, which cycle every of 4 rounds (avoiding array * index/lookup). * * Unrolling to multiples of 8 avoids the mod 8 rotation constant lookup, and allows * inlining constant rotation values (avoiding array index/lookup). */ for (int d = 1; d < (ROUNDS_512 / 4); d += 2) { final int dm9 = mod9[d]; final int dm3 = mod3[d]; /* * 4 rounds of mix and permute. * * Permute schedule has a 4 round cycle, so permutes are inlined in the mix * operations in each 4 round block. */ b1 = rotlXor(b1, ROTATION_0_0, b0 += b1); b3 = rotlXor(b3, ROTATION_0_1, b2 += b3); b5 = rotlXor(b5, ROTATION_0_2, b4 += b5); b7 = rotlXor(b7, ROTATION_0_3, b6 += b7); b1 = rotlXor(b1, ROTATION_1_0, b2 += b1); b7 = rotlXor(b7, ROTATION_1_1, b4 += b7); b5 = rotlXor(b5, ROTATION_1_2, b6 += b5); b3 = rotlXor(b3, ROTATION_1_3, b0 += b3); b1 = rotlXor(b1, ROTATION_2_0, b4 += b1); b3 = rotlXor(b3, ROTATION_2_1, b6 += b3); b5 = rotlXor(b5, ROTATION_2_2, b0 += b5); b7 = rotlXor(b7, ROTATION_2_3, b2 += b7); b1 = rotlXor(b1, ROTATION_3_0, b6 += b1); b7 = rotlXor(b7, ROTATION_3_1, b0 += b7); b5 = rotlXor(b5, ROTATION_3_2, b2 += b5); b3 = rotlXor(b3, ROTATION_3_3, b4 += b3); /* * Subkey injection for first 4 rounds. */ b0 += kw[dm9]; b1 += kw[dm9 + 1]; b2 += kw[dm9 + 2]; b3 += kw[dm9 + 3]; b4 += kw[dm9 + 4]; b5 += kw[dm9 + 5] + t[dm3]; b6 += kw[dm9 + 6] + t[dm3 + 1]; b7 += kw[dm9 + 7] + d; /* * 4 more rounds of mix/permute */ b1 = rotlXor(b1, ROTATION_4_0, b0 += b1); b3 = rotlXor(b3, ROTATION_4_1, b2 += b3); b5 = rotlXor(b5, ROTATION_4_2, b4 += b5); b7 = rotlXor(b7, ROTATION_4_3, b6 += b7); b1 = rotlXor(b1, ROTATION_5_0, b2 += b1); b7 = rotlXor(b7, ROTATION_5_1, b4 += b7); b5 = rotlXor(b5, ROTATION_5_2, b6 += b5); b3 = rotlXor(b3, ROTATION_5_3, b0 += b3); b1 = rotlXor(b1, ROTATION_6_0, b4 += b1); b3 = rotlXor(b3, ROTATION_6_1, b6 += b3); b5 = rotlXor(b5, ROTATION_6_2, b0 += b5); b7 = rotlXor(b7, ROTATION_6_3, b2 += b7); b1 = rotlXor(b1, ROTATION_7_0, b6 += b1); b7 = rotlXor(b7, ROTATION_7_1, b0 += b7); b5 = rotlXor(b5, ROTATION_7_2, b2 += b5); b3 = rotlXor(b3, ROTATION_7_3, b4 += b3); /* * Subkey injection for next 4 rounds. */ b0 += kw[dm9 + 1]; b1 += kw[dm9 + 2]; b2 += kw[dm9 + 3]; b3 += kw[dm9 + 4]; b4 += kw[dm9 + 5]; b5 += kw[dm9 + 6] + t[dm3 + 1]; b6 += kw[dm9 + 7] + t[dm3 + 2]; b7 += kw[dm9 + 8] + d + 1; } /* * Output cipher state. */ out[0] = b0; out[1] = b1; out[2] = b2; out[3] = b3; out[4] = b4; out[5] = b5; out[6] = b6; out[7] = b7; } public void decryptBlock(long[] block, long[] state) { final long[] kw = this.kw; final long[] t = this.t; final int[] mod9 = MOD9; final int[] mod3 = MOD3; /* Help the JIT avoid index bounds checks */ if (kw.length != 17) { throw new IllegalArgumentException(); } if (t.length != 5) { throw new IllegalArgumentException(); } long b0 = block[0]; long b1 = block[1]; long b2 = block[2]; long b3 = block[3]; long b4 = block[4]; long b5 = block[5]; long b6 = block[6]; long b7 = block[7]; for (int d = (ROUNDS_512 / 4) - 1; d >= 1; d -= 2) { final int dm9 = mod9[d]; final int dm3 = mod3[d]; /* Reverse key injection for second 4 rounds */ b0 -= kw[dm9 + 1]; b1 -= kw[dm9 + 2]; b2 -= kw[dm9 + 3]; b3 -= kw[dm9 + 4]; b4 -= kw[dm9 + 5]; b5 -= kw[dm9 + 6] + t[dm3 + 1]; b6 -= kw[dm9 + 7] + t[dm3 + 2]; b7 -= kw[dm9 + 8] + d + 1; /* Reverse second 4 mix/permute rounds */ b1 = xorRotr(b1, ROTATION_7_0, b6); b6 -= b1; b7 = xorRotr(b7, ROTATION_7_1, b0); b0 -= b7; b5 = xorRotr(b5, ROTATION_7_2, b2); b2 -= b5; b3 = xorRotr(b3, ROTATION_7_3, b4); b4 -= b3; b1 = xorRotr(b1, ROTATION_6_0, b4); b4 -= b1; b3 = xorRotr(b3, ROTATION_6_1, b6); b6 -= b3; b5 = xorRotr(b5, ROTATION_6_2, b0); b0 -= b5; b7 = xorRotr(b7, ROTATION_6_3, b2); b2 -= b7; b1 = xorRotr(b1, ROTATION_5_0, b2); b2 -= b1; b7 = xorRotr(b7, ROTATION_5_1, b4); b4 -= b7; b5 = xorRotr(b5, ROTATION_5_2, b6); b6 -= b5; b3 = xorRotr(b3, ROTATION_5_3, b0); b0 -= b3; b1 = xorRotr(b1, ROTATION_4_0, b0); b0 -= b1; b3 = xorRotr(b3, ROTATION_4_1, b2); b2 -= b3; b5 = xorRotr(b5, ROTATION_4_2, b4); b4 -= b5; b7 = xorRotr(b7, ROTATION_4_3, b6); b6 -= b7; /* Reverse key injection for first 4 rounds */ b0 -= kw[dm9]; b1 -= kw[dm9 + 1]; b2 -= kw[dm9 + 2]; b3 -= kw[dm9 + 3]; b4 -= kw[dm9 + 4]; b5 -= kw[dm9 + 5] + t[dm3]; b6 -= kw[dm9 + 6] + t[dm3 + 1]; b7 -= kw[dm9 + 7] + d; /* Reverse first 4 mix/permute rounds */ b1 = xorRotr(b1, ROTATION_3_0, b6); b6 -= b1; b7 = xorRotr(b7, ROTATION_3_1, b0); b0 -= b7; b5 = xorRotr(b5, ROTATION_3_2, b2); b2 -= b5; b3 = xorRotr(b3, ROTATION_3_3, b4); b4 -= b3; b1 = xorRotr(b1, ROTATION_2_0, b4); b4 -= b1; b3 = xorRotr(b3, ROTATION_2_1, b6); b6 -= b3; b5 = xorRotr(b5, ROTATION_2_2, b0); b0 -= b5; b7 = xorRotr(b7, ROTATION_2_3, b2); b2 -= b7; b1 = xorRotr(b1, ROTATION_1_0, b2); b2 -= b1; b7 = xorRotr(b7, ROTATION_1_1, b4); b4 -= b7; b5 = xorRotr(b5, ROTATION_1_2, b6); b6 -= b5; b3 = xorRotr(b3, ROTATION_1_3, b0); b0 -= b3; b1 = xorRotr(b1, ROTATION_0_0, b0); b0 -= b1; b3 = xorRotr(b3, ROTATION_0_1, b2); b2 -= b3; b5 = xorRotr(b5, ROTATION_0_2, b4); b4 -= b5; b7 = xorRotr(b7, ROTATION_0_3, b6); b6 -= b7; } /* * First subkey uninjection. */ b0 -= kw[0]; b1 -= kw[1]; b2 -= kw[2]; b3 -= kw[3]; b4 -= kw[4]; b5 -= kw[5] + t[0]; b6 -= kw[6] + t[1]; b7 -= kw[7]; /* * Output cipher state. */ state[0] = b0; state[1] = b1; state[2] = b2; state[3] = b3; state[4] = b4; state[5] = b5; state[6] = b6; state[7] = b7; } } private static final class Threefish1024Cipher extends ThreefishCipher { /** * Mix rotation constants defined in Skein 1.3 specification */ private static final int ROTATION_0_0 = 24, ROTATION_0_1 = 13, ROTATION_0_2 = 8, ROTATION_0_3 = 47; private static final int ROTATION_0_4 = 8, ROTATION_0_5 = 17, ROTATION_0_6 = 22, ROTATION_0_7 = 37; private static final int ROTATION_1_0 = 38, ROTATION_1_1 = 19, ROTATION_1_2 = 10, ROTATION_1_3 = 55; private static final int ROTATION_1_4 = 49, ROTATION_1_5 = 18, ROTATION_1_6 = 23, ROTATION_1_7 = 52; private static final int ROTATION_2_0 = 33, ROTATION_2_1 = 4, ROTATION_2_2 = 51, ROTATION_2_3 = 13; private static final int ROTATION_2_4 = 34, ROTATION_2_5 = 41, ROTATION_2_6 = 59, ROTATION_2_7 = 17; private static final int ROTATION_3_0 = 5, ROTATION_3_1 = 20, ROTATION_3_2 = 48, ROTATION_3_3 = 41; private static final int ROTATION_3_4 = 47, ROTATION_3_5 = 28, ROTATION_3_6 = 16, ROTATION_3_7 = 25; private static final int ROTATION_4_0 = 41, ROTATION_4_1 = 9, ROTATION_4_2 = 37, ROTATION_4_3 = 31; private static final int ROTATION_4_4 = 12, ROTATION_4_5 = 47, ROTATION_4_6 = 44, ROTATION_4_7 = 30; private static final int ROTATION_5_0 = 16, ROTATION_5_1 = 34, ROTATION_5_2 = 56, ROTATION_5_3 = 51; private static final int ROTATION_5_4 = 4, ROTATION_5_5 = 53, ROTATION_5_6 = 42, ROTATION_5_7 = 41; private static final int ROTATION_6_0 = 31, ROTATION_6_1 = 44, ROTATION_6_2 = 47, ROTATION_6_3 = 46; private static final int ROTATION_6_4 = 19, ROTATION_6_5 = 42, ROTATION_6_6 = 44, ROTATION_6_7 = 25; private static final int ROTATION_7_0 = 9, ROTATION_7_1 = 48, ROTATION_7_2 = 35, ROTATION_7_3 = 52; private static final int ROTATION_7_4 = 23, ROTATION_7_5 = 31, ROTATION_7_6 = 37, ROTATION_7_7 = 20; public Threefish1024Cipher(long[] kw, long[] t) { super(kw, t); } void encryptBlock(long[] block, long[] out) { final long[] kw = this.kw; final long[] t = this.t; final int[] mod17 = MOD17; final int[] mod3 = MOD3; /* Help the JIT avoid index bounds checks */ if (kw.length != 33) { throw new IllegalArgumentException(); } if (t.length != 5) { throw new IllegalArgumentException(); } /* * Read 16 words of plaintext data, not using arrays for cipher state */ long b0 = block[0]; long b1 = block[1]; long b2 = block[2]; long b3 = block[3]; long b4 = block[4]; long b5 = block[5]; long b6 = block[6]; long b7 = block[7]; long b8 = block[8]; long b9 = block[9]; long b10 = block[10]; long b11 = block[11]; long b12 = block[12]; long b13 = block[13]; long b14 = block[14]; long b15 = block[15]; /* * First subkey injection. */ b0 += kw[0]; b1 += kw[1]; b2 += kw[2]; b3 += kw[3]; b4 += kw[4]; b5 += kw[5]; b6 += kw[6]; b7 += kw[7]; b8 += kw[8]; b9 += kw[9]; b10 += kw[10]; b11 += kw[11]; b12 += kw[12]; b13 += kw[13] + t[0]; b14 += kw[14] + t[1]; b15 += kw[15]; /* * Rounds loop, unrolled to 8 rounds per iteration. * * Unrolling to multiples of 4 avoids the mod 4 check for key injection, and allows * inlining of the permutations, which cycle every of 4 rounds (avoiding array * index/lookup). * * Unrolling to multiples of 8 avoids the mod 8 rotation constant lookup, and allows * inlining constant rotation values (avoiding array index/lookup). */ for (int d = 1; d < (ROUNDS_1024 / 4); d += 2) { final int dm17 = mod17[d]; final int dm3 = mod3[d]; /* * 4 rounds of mix and permute. * * Permute schedule has a 4 round cycle, so permutes are inlined in the mix * operations in each 4 round block. */ b1 = rotlXor(b1, ROTATION_0_0, b0 += b1); b3 = rotlXor(b3, ROTATION_0_1, b2 += b3); b5 = rotlXor(b5, ROTATION_0_2, b4 += b5); b7 = rotlXor(b7, ROTATION_0_3, b6 += b7); b9 = rotlXor(b9, ROTATION_0_4, b8 += b9); b11 = rotlXor(b11, ROTATION_0_5, b10 += b11); b13 = rotlXor(b13, ROTATION_0_6, b12 += b13); b15 = rotlXor(b15, ROTATION_0_7, b14 += b15); b9 = rotlXor(b9, ROTATION_1_0, b0 += b9); b13 = rotlXor(b13, ROTATION_1_1, b2 += b13); b11 = rotlXor(b11, ROTATION_1_2, b6 += b11); b15 = rotlXor(b15, ROTATION_1_3, b4 += b15); b7 = rotlXor(b7, ROTATION_1_4, b10 += b7); b3 = rotlXor(b3, ROTATION_1_5, b12 += b3); b5 = rotlXor(b5, ROTATION_1_6, b14 += b5); b1 = rotlXor(b1, ROTATION_1_7, b8 += b1); b7 = rotlXor(b7, ROTATION_2_0, b0 += b7); b5 = rotlXor(b5, ROTATION_2_1, b2 += b5); b3 = rotlXor(b3, ROTATION_2_2, b4 += b3); b1 = rotlXor(b1, ROTATION_2_3, b6 += b1); b15 = rotlXor(b15, ROTATION_2_4, b12 += b15); b13 = rotlXor(b13, ROTATION_2_5, b14 += b13); b11 = rotlXor(b11, ROTATION_2_6, b8 += b11); b9 = rotlXor(b9, ROTATION_2_7, b10 += b9); b15 = rotlXor(b15, ROTATION_3_0, b0 += b15); b11 = rotlXor(b11, ROTATION_3_1, b2 += b11); b13 = rotlXor(b13, ROTATION_3_2, b6 += b13); b9 = rotlXor(b9, ROTATION_3_3, b4 += b9); b1 = rotlXor(b1, ROTATION_3_4, b14 += b1); b5 = rotlXor(b5, ROTATION_3_5, b8 += b5); b3 = rotlXor(b3, ROTATION_3_6, b10 += b3); b7 = rotlXor(b7, ROTATION_3_7, b12 += b7); /* * Subkey injection for first 4 rounds. */ b0 += kw[dm17]; b1 += kw[dm17 + 1]; b2 += kw[dm17 + 2]; b3 += kw[dm17 + 3]; b4 += kw[dm17 + 4]; b5 += kw[dm17 + 5]; b6 += kw[dm17 + 6]; b7 += kw[dm17 + 7]; b8 += kw[dm17 + 8]; b9 += kw[dm17 + 9]; b10 += kw[dm17 + 10]; b11 += kw[dm17 + 11]; b12 += kw[dm17 + 12]; b13 += kw[dm17 + 13] + t[dm3]; b14 += kw[dm17 + 14] + t[dm3 + 1]; b15 += kw[dm17 + 15] + d; /* * 4 more rounds of mix/permute */ b1 = rotlXor(b1, ROTATION_4_0, b0 += b1); b3 = rotlXor(b3, ROTATION_4_1, b2 += b3); b5 = rotlXor(b5, ROTATION_4_2, b4 += b5); b7 = rotlXor(b7, ROTATION_4_3, b6 += b7); b9 = rotlXor(b9, ROTATION_4_4, b8 += b9); b11 = rotlXor(b11, ROTATION_4_5, b10 += b11); b13 = rotlXor(b13, ROTATION_4_6, b12 += b13); b15 = rotlXor(b15, ROTATION_4_7, b14 += b15); b9 = rotlXor(b9, ROTATION_5_0, b0 += b9); b13 = rotlXor(b13, ROTATION_5_1, b2 += b13); b11 = rotlXor(b11, ROTATION_5_2, b6 += b11); b15 = rotlXor(b15, ROTATION_5_3, b4 += b15); b7 = rotlXor(b7, ROTATION_5_4, b10 += b7); b3 = rotlXor(b3, ROTATION_5_5, b12 += b3); b5 = rotlXor(b5, ROTATION_5_6, b14 += b5); b1 = rotlXor(b1, ROTATION_5_7, b8 += b1); b7 = rotlXor(b7, ROTATION_6_0, b0 += b7); b5 = rotlXor(b5, ROTATION_6_1, b2 += b5); b3 = rotlXor(b3, ROTATION_6_2, b4 += b3); b1 = rotlXor(b1, ROTATION_6_3, b6 += b1); b15 = rotlXor(b15, ROTATION_6_4, b12 += b15); b13 = rotlXor(b13, ROTATION_6_5, b14 += b13); b11 = rotlXor(b11, ROTATION_6_6, b8 += b11); b9 = rotlXor(b9, ROTATION_6_7, b10 += b9); b15 = rotlXor(b15, ROTATION_7_0, b0 += b15); b11 = rotlXor(b11, ROTATION_7_1, b2 += b11); b13 = rotlXor(b13, ROTATION_7_2, b6 += b13); b9 = rotlXor(b9, ROTATION_7_3, b4 += b9); b1 = rotlXor(b1, ROTATION_7_4, b14 += b1); b5 = rotlXor(b5, ROTATION_7_5, b8 += b5); b3 = rotlXor(b3, ROTATION_7_6, b10 += b3); b7 = rotlXor(b7, ROTATION_7_7, b12 += b7); /* * Subkey injection for next 4 rounds. */ b0 += kw[dm17 + 1]; b1 += kw[dm17 + 2]; b2 += kw[dm17 + 3]; b3 += kw[dm17 + 4]; b4 += kw[dm17 + 5]; b5 += kw[dm17 + 6]; b6 += kw[dm17 + 7]; b7 += kw[dm17 + 8]; b8 += kw[dm17 + 9]; b9 += kw[dm17 + 10]; b10 += kw[dm17 + 11]; b11 += kw[dm17 + 12]; b12 += kw[dm17 + 13]; b13 += kw[dm17 + 14] + t[dm3 + 1]; b14 += kw[dm17 + 15] + t[dm3 + 2]; b15 += kw[dm17 + 16] + d + 1; } /* * Output cipher state. */ out[0] = b0; out[1] = b1; out[2] = b2; out[3] = b3; out[4] = b4; out[5] = b5; out[6] = b6; out[7] = b7; out[8] = b8; out[9] = b9; out[10] = b10; out[11] = b11; out[12] = b12; out[13] = b13; out[14] = b14; out[15] = b15; } void decryptBlock(long[] block, long[] state) { final long[] kw = this.kw; final long[] t = this.t; final int[] mod17 = MOD17; final int[] mod3 = MOD3; /* Help the JIT avoid index bounds checks */ if (kw.length != 33) { throw new IllegalArgumentException(); } if (t.length != 5) { throw new IllegalArgumentException(); } long b0 = block[0]; long b1 = block[1]; long b2 = block[2]; long b3 = block[3]; long b4 = block[4]; long b5 = block[5]; long b6 = block[6]; long b7 = block[7]; long b8 = block[8]; long b9 = block[9]; long b10 = block[10]; long b11 = block[11]; long b12 = block[12]; long b13 = block[13]; long b14 = block[14]; long b15 = block[15]; for (int d = (ROUNDS_1024 / 4) - 1; d >= 1; d -= 2) { final int dm17 = mod17[d]; final int dm3 = mod3[d]; /* Reverse key injection for second 4 rounds */ b0 -= kw[dm17 + 1]; b1 -= kw[dm17 + 2]; b2 -= kw[dm17 + 3]; b3 -= kw[dm17 + 4]; b4 -= kw[dm17 + 5]; b5 -= kw[dm17 + 6]; b6 -= kw[dm17 + 7]; b7 -= kw[dm17 + 8]; b8 -= kw[dm17 + 9]; b9 -= kw[dm17 + 10]; b10 -= kw[dm17 + 11]; b11 -= kw[dm17 + 12]; b12 -= kw[dm17 + 13]; b13 -= kw[dm17 + 14] + t[dm3 + 1]; b14 -= kw[dm17 + 15] + t[dm3 + 2]; b15 -= kw[dm17 + 16] + d + 1; /* Reverse second 4 mix/permute rounds */ b15 = xorRotr(b15, ROTATION_7_0, b0); b0 -= b15; b11 = xorRotr(b11, ROTATION_7_1, b2); b2 -= b11; b13 = xorRotr(b13, ROTATION_7_2, b6); b6 -= b13; b9 = xorRotr(b9, ROTATION_7_3, b4); b4 -= b9; b1 = xorRotr(b1, ROTATION_7_4, b14); b14 -= b1; b5 = xorRotr(b5, ROTATION_7_5, b8); b8 -= b5; b3 = xorRotr(b3, ROTATION_7_6, b10); b10 -= b3; b7 = xorRotr(b7, ROTATION_7_7, b12); b12 -= b7; b7 = xorRotr(b7, ROTATION_6_0, b0); b0 -= b7; b5 = xorRotr(b5, ROTATION_6_1, b2); b2 -= b5; b3 = xorRotr(b3, ROTATION_6_2, b4); b4 -= b3; b1 = xorRotr(b1, ROTATION_6_3, b6); b6 -= b1; b15 = xorRotr(b15, ROTATION_6_4, b12); b12 -= b15; b13 = xorRotr(b13, ROTATION_6_5, b14); b14 -= b13; b11 = xorRotr(b11, ROTATION_6_6, b8); b8 -= b11; b9 = xorRotr(b9, ROTATION_6_7, b10); b10 -= b9; b9 = xorRotr(b9, ROTATION_5_0, b0); b0 -= b9; b13 = xorRotr(b13, ROTATION_5_1, b2); b2 -= b13; b11 = xorRotr(b11, ROTATION_5_2, b6); b6 -= b11; b15 = xorRotr(b15, ROTATION_5_3, b4); b4 -= b15; b7 = xorRotr(b7, ROTATION_5_4, b10); b10 -= b7; b3 = xorRotr(b3, ROTATION_5_5, b12); b12 -= b3; b5 = xorRotr(b5, ROTATION_5_6, b14); b14 -= b5; b1 = xorRotr(b1, ROTATION_5_7, b8); b8 -= b1; b1 = xorRotr(b1, ROTATION_4_0, b0); b0 -= b1; b3 = xorRotr(b3, ROTATION_4_1, b2); b2 -= b3; b5 = xorRotr(b5, ROTATION_4_2, b4); b4 -= b5; b7 = xorRotr(b7, ROTATION_4_3, b6); b6 -= b7; b9 = xorRotr(b9, ROTATION_4_4, b8); b8 -= b9; b11 = xorRotr(b11, ROTATION_4_5, b10); b10 -= b11; b13 = xorRotr(b13, ROTATION_4_6, b12); b12 -= b13; b15 = xorRotr(b15, ROTATION_4_7, b14); b14 -= b15; /* Reverse key injection for first 4 rounds */ b0 -= kw[dm17]; b1 -= kw[dm17 + 1]; b2 -= kw[dm17 + 2]; b3 -= kw[dm17 + 3]; b4 -= kw[dm17 + 4]; b5 -= kw[dm17 + 5]; b6 -= kw[dm17 + 6]; b7 -= kw[dm17 + 7]; b8 -= kw[dm17 + 8]; b9 -= kw[dm17 + 9]; b10 -= kw[dm17 + 10]; b11 -= kw[dm17 + 11]; b12 -= kw[dm17 + 12]; b13 -= kw[dm17 + 13] + t[dm3]; b14 -= kw[dm17 + 14] + t[dm3 + 1]; b15 -= kw[dm17 + 15] + d; /* Reverse first 4 mix/permute rounds */ b15 = xorRotr(b15, ROTATION_3_0, b0); b0 -= b15; b11 = xorRotr(b11, ROTATION_3_1, b2); b2 -= b11; b13 = xorRotr(b13, ROTATION_3_2, b6); b6 -= b13; b9 = xorRotr(b9, ROTATION_3_3, b4); b4 -= b9; b1 = xorRotr(b1, ROTATION_3_4, b14); b14 -= b1; b5 = xorRotr(b5, ROTATION_3_5, b8); b8 -= b5; b3 = xorRotr(b3, ROTATION_3_6, b10); b10 -= b3; b7 = xorRotr(b7, ROTATION_3_7, b12); b12 -= b7; b7 = xorRotr(b7, ROTATION_2_0, b0); b0 -= b7; b5 = xorRotr(b5, ROTATION_2_1, b2); b2 -= b5; b3 = xorRotr(b3, ROTATION_2_2, b4); b4 -= b3; b1 = xorRotr(b1, ROTATION_2_3, b6); b6 -= b1; b15 = xorRotr(b15, ROTATION_2_4, b12); b12 -= b15; b13 = xorRotr(b13, ROTATION_2_5, b14); b14 -= b13; b11 = xorRotr(b11, ROTATION_2_6, b8); b8 -= b11; b9 = xorRotr(b9, ROTATION_2_7, b10); b10 -= b9; b9 = xorRotr(b9, ROTATION_1_0, b0); b0 -= b9; b13 = xorRotr(b13, ROTATION_1_1, b2); b2 -= b13; b11 = xorRotr(b11, ROTATION_1_2, b6); b6 -= b11; b15 = xorRotr(b15, ROTATION_1_3, b4); b4 -= b15; b7 = xorRotr(b7, ROTATION_1_4, b10); b10 -= b7; b3 = xorRotr(b3, ROTATION_1_5, b12); b12 -= b3; b5 = xorRotr(b5, ROTATION_1_6, b14); b14 -= b5; b1 = xorRotr(b1, ROTATION_1_7, b8); b8 -= b1; b1 = xorRotr(b1, ROTATION_0_0, b0); b0 -= b1; b3 = xorRotr(b3, ROTATION_0_1, b2); b2 -= b3; b5 = xorRotr(b5, ROTATION_0_2, b4); b4 -= b5; b7 = xorRotr(b7, ROTATION_0_3, b6); b6 -= b7; b9 = xorRotr(b9, ROTATION_0_4, b8); b8 -= b9; b11 = xorRotr(b11, ROTATION_0_5, b10); b10 -= b11; b13 = xorRotr(b13, ROTATION_0_6, b12); b12 -= b13; b15 = xorRotr(b15, ROTATION_0_7, b14); b14 -= b15; } /* * First subkey uninjection. */ b0 -= kw[0]; b1 -= kw[1]; b2 -= kw[2]; b3 -= kw[3]; b4 -= kw[4]; b5 -= kw[5]; b6 -= kw[6]; b7 -= kw[7]; b8 -= kw[8]; b9 -= kw[9]; b10 -= kw[10]; b11 -= kw[11]; b12 -= kw[12]; b13 -= kw[13] + t[0]; b14 -= kw[14] + t[1]; b15 -= kw[15]; /* * Output cipher state. */ state[0] = b0; state[1] = b1; state[2] = b2; state[3] = b3; state[4] = b4; state[5] = b5; state[6] = b6; state[7] = b7; state[8] = b8; state[9] = b9; state[10] = b10; state[11] = b11; state[12] = b12; state[13] = b13; state[14] = b14; state[15] = b15; } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy