org.bouncycastle.math.ec.custom.sec.SecP256R1Curve Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-jdk15to18 Show documentation
Show all versions of bcprov-jdk15to18 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5 to JDK 1.8.
package org.bouncycastle.math.ec.custom.sec;
import java.math.BigInteger;
import java.security.SecureRandom;
import org.bouncycastle.math.ec.AbstractECLookupTable;
import org.bouncycastle.math.ec.ECConstants;
import org.bouncycastle.math.ec.ECCurve;
import org.bouncycastle.math.ec.ECFieldElement;
import org.bouncycastle.math.ec.ECLookupTable;
import org.bouncycastle.math.ec.ECPoint;
import org.bouncycastle.math.raw.Nat256;
import org.bouncycastle.util.encoders.Hex;
public class SecP256R1Curve extends ECCurve.AbstractFp
{
public static final BigInteger q = SecP256R1FieldElement.Q;
private static final int SECP256R1_DEFAULT_COORDS = COORD_JACOBIAN;
private static final ECFieldElement[] SECP256R1_AFFINE_ZS = new ECFieldElement[] { new SecP256R1FieldElement(ECConstants.ONE) };
protected SecP256R1Point infinity;
public SecP256R1Curve()
{
super(q);
this.infinity = new SecP256R1Point(this, null, null);
this.a = fromBigInteger(new BigInteger(1,
Hex.decodeStrict("FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFC")));
this.b = fromBigInteger(new BigInteger(1,
Hex.decodeStrict("5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B")));
this.order = new BigInteger(1, Hex.decodeStrict("FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551"));
this.cofactor = BigInteger.valueOf(1);
this.coord = SECP256R1_DEFAULT_COORDS;
}
protected ECCurve cloneCurve()
{
return new SecP256R1Curve();
}
public boolean supportsCoordinateSystem(int coord)
{
switch (coord)
{
case COORD_JACOBIAN:
return true;
default:
return false;
}
}
public BigInteger getQ()
{
return q;
}
public int getFieldSize()
{
return q.bitLength();
}
public ECFieldElement fromBigInteger(BigInteger x)
{
return new SecP256R1FieldElement(x);
}
protected ECPoint createRawPoint(ECFieldElement x, ECFieldElement y)
{
return new SecP256R1Point(this, x, y);
}
protected ECPoint createRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs)
{
return new SecP256R1Point(this, x, y, zs);
}
public ECPoint getInfinity()
{
return infinity;
}
public ECLookupTable createCacheSafeLookupTable(ECPoint[] points, int off, final int len)
{
final int FE_INTS = 8;
final int[] table = new int[len * FE_INTS * 2];
{
int pos = 0;
for (int i = 0; i < len; ++i)
{
ECPoint p = points[off + i];
Nat256.copy(((SecP256R1FieldElement)p.getRawXCoord()).x, 0, table, pos); pos += FE_INTS;
Nat256.copy(((SecP256R1FieldElement)p.getRawYCoord()).x, 0, table, pos); pos += FE_INTS;
}
}
return new AbstractECLookupTable()
{
public int getSize()
{
return len;
}
public ECPoint lookup(int index)
{
int[] x = Nat256.create(), y = Nat256.create();
int pos = 0;
for (int i = 0; i < len; ++i)
{
int MASK = ((i ^ index) - 1) >> 31;
for (int j = 0; j < FE_INTS; ++j)
{
x[j] ^= table[pos + j] & MASK;
y[j] ^= table[pos + FE_INTS + j] & MASK;
}
pos += (FE_INTS * 2);
}
return createPoint(x, y);
}
public ECPoint lookupVar(int index)
{
int[] x = Nat256.create(), y = Nat256.create();
int pos = index * FE_INTS * 2;
for (int j = 0; j < FE_INTS; ++j)
{
x[j] = table[pos + j];
y[j] = table[pos + FE_INTS + j];
}
return createPoint(x, y);
}
private ECPoint createPoint(int[] x, int[] y)
{
return createRawPoint(new SecP256R1FieldElement(x), new SecP256R1FieldElement(y), SECP256R1_AFFINE_ZS);
}
};
}
public ECFieldElement randomFieldElement(SecureRandom r)
{
int[] x = Nat256.create();
SecP256R1Field.random(r, x);
return new SecP256R1FieldElement(x);
}
public ECFieldElement randomFieldElementMult(SecureRandom r)
{
int[] x = Nat256.create();
SecP256R1Field.randomMult(r, x);
return new SecP256R1FieldElement(x);
}
}