All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.math.ec.rfc8032.Ed448 Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5 to JDK 1.8.

There is a newer version: 1.79
Show newest version
package org.bouncycastle.math.ec.rfc8032;

import java.security.SecureRandom;

import org.bouncycastle.crypto.Xof;
import org.bouncycastle.crypto.digests.SHAKEDigest;
import org.bouncycastle.math.ec.rfc7748.X448;
import org.bouncycastle.math.ec.rfc7748.X448Field;
import org.bouncycastle.math.raw.Nat;

/**
 * A low-level implementation of the Ed448 and Ed448ph instantiations of the Edwards-Curve Digital Signature
 * Algorithm specified in RFC 8032.
 * 

* The implementation uses the "signed mult-comb" algorithm (for scalar multiplication by a fixed point) from * Mike Hamburg, "Fast and compact elliptic-curve cryptography". Standard * projective coordinates are * used for most point arithmetic. */ public abstract class Ed448 { // x^2 + y^2 == 1 - 39081 * x^2 * y^2 public static final class Algorithm { public static final int Ed448 = 0; public static final int Ed448ph = 1; } public static final class PublicPoint { final int[] data; PublicPoint(int[] data) { this.data = data; } } private static class F extends X448Field {}; private static final int COORD_INTS = 14; private static final int POINT_BYTES = COORD_INTS * 4 + 1; private static final int SCALAR_INTS = 14; private static final int SCALAR_BYTES = SCALAR_INTS * 4 + 1; public static final int PREHASH_SIZE = 64; public static final int PUBLIC_KEY_SIZE = POINT_BYTES; public static final int SECRET_KEY_SIZE = 57; public static final int SIGNATURE_SIZE = POINT_BYTES + SCALAR_BYTES; // "SigEd448" private static final byte[] DOM4_PREFIX = new byte[]{ 0x53, 0x69, 0x67, 0x45, 0x64, 0x34, 0x34, 0x38 }; private static final int[] P = new int[] { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFE, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF }; private static final int[] B_x = new int[]{ 0x070CC05E, 0x026A82BC, 0x00938E26, 0x080E18B0, 0x0511433B, 0x0F72AB66, 0x0412AE1A, 0x0A3D3A46, 0x0A6DE324, 0x00F1767E, 0x04657047, 0x036DA9E1, 0x05A622BF, 0x0ED221D1, 0x066BED0D, 0x04F1970C }; private static final int[] B_y = new int[]{ 0x0230FA14, 0x008795BF, 0x07C8AD98, 0x0132C4ED, 0x09C4FDBD, 0x01CE67C3, 0x073AD3FF, 0x005A0C2D, 0x07789C1E, 0x0A398408, 0x0A73736C, 0x0C7624BE, 0x003756C9, 0x02488762, 0x016EB6BC, 0x0693F467 }; // 2^225 * B private static final int[] B225_x = new int[]{ 0x06909EE2, 0x01D7605C, 0x0995EC8A, 0x0FC4D970, 0x0CF2B361, 0x02D82E9D, 0x01225F55, 0x007F0EF6, 0x0AEE9C55, 0x0A240C13, 0x05627B54, 0x0D449D1E, 0x03A44575, 0x007164A7, 0x0BD4BD71, 0x061A15FD }; private static final int[] B225_y = new int[]{ 0x0D3A9FE4, 0x030696B9, 0x07E7E326, 0x068308C7, 0x0CE0B8C8, 0x03AC222B, 0x0304DB8E, 0x083EE319, 0x05E5DB0B, 0x0ECA503B, 0x0B1C6539, 0x078A8DCE, 0x02D256BC, 0x04A8B05E, 0x0BD9FD57, 0x0A1C3CB8 }; private static final int C_d = 39081; // private static final int WNAF_WIDTH = 6; private static final int WNAF_WIDTH_225 = 5; private static final int WNAF_WIDTH_BASE = 7; // scalarMultBase supports varying blocks, teeth, spacing so long as their product is in range [449, 479] private static final int PRECOMP_BLOCKS = 5; private static final int PRECOMP_TEETH = 5; private static final int PRECOMP_SPACING = 18; private static final int PRECOMP_RANGE = PRECOMP_BLOCKS * PRECOMP_TEETH * PRECOMP_SPACING; // 448 < range < 480 private static final int PRECOMP_POINTS = 1 << (PRECOMP_TEETH - 1); private static final int PRECOMP_MASK = PRECOMP_POINTS - 1; private static final Object PRECOMP_LOCK = new Object(); private static PointAffine[] PRECOMP_BASE_WNAF = null; private static PointAffine[] PRECOMP_BASE225_WNAF = null; private static int[] PRECOMP_BASE_COMB = null; private static class PointAffine { int[] x = F.create(); int[] y = F.create(); } private static class PointProjective { int[] x = F.create(); int[] y = F.create(); int[] z = F.create(); } // Temp space to avoid allocations in point formulae. private static class PointTemp { int[] r0 = F.create(); int[] r1 = F.create();; int[] r2 = F.create(); int[] r3 = F.create();; int[] r4 = F.create(); int[] r5 = F.create();; int[] r6 = F.create(); int[] r7 = F.create();; } private static byte[] calculateS(byte[] r, byte[] k, byte[] s) { int[] t = new int[SCALAR_INTS * 2]; Scalar448.decode(r, t); int[] u = new int[SCALAR_INTS]; Scalar448.decode(k, u); int[] v = new int[SCALAR_INTS]; Scalar448.decode(s, v); Nat.mulAddTo(SCALAR_INTS, u, v, t); byte[] result = new byte[SCALAR_BYTES * 2]; Codec.encode32(t, 0, t.length, result, 0); return Scalar448.reduce912(result); } private static boolean checkContextVar(byte[] ctx) { return ctx != null && ctx.length < 256; } private static int checkPoint(PointAffine p) { int[] t = F.create(); int[] u = F.create(); int[] v = F.create(); F.sqr(p.x, u); F.sqr(p.y, v); F.mul(u, v, t); F.add(u, v, u); F.mul(t, C_d, t); F.subOne(t); F.add(t, u, t); F.normalize(t); F.normalize(v); return F.isZero(t) & ~F.isZero(v); } private static int checkPoint(PointProjective p) { int[] t = F.create(); int[] u = F.create(); int[] v = F.create(); int[] w = F.create(); F.sqr(p.x, u); F.sqr(p.y, v); F.sqr(p.z, w); F.mul(u, v, t); F.add(u, v, u); F.mul(u, w, u); F.sqr(w, w); F.mul(t, C_d, t); F.sub(t, w, t); F.add(t, u, t); F.normalize(t); F.normalize(v); F.normalize(w); return F.isZero(t) & ~F.isZero(v) & ~F.isZero(w); } private static boolean checkPointFullVar(byte[] p) { if ((p[POINT_BYTES - 1] & 0x7F) != 0x00) return false; int y13 = Codec.decode32(p, 52); int t0 = y13; int t1 = y13 ^ P[13]; for (int i = COORD_INTS - 2; i > 0; --i) { int yi = Codec.decode32(p, i * 4); // Reject non-canonical encodings (i.e. >= P) if (t1 == 0 && (yi + Integer.MIN_VALUE) > (P[i] + Integer.MIN_VALUE)) return false; t0 |= yi; t1 |= yi ^ P[i]; } int y0 = Codec.decode32(p, 0); // Reject 0 and 1 if (t0 == 0 && (y0 + Integer.MIN_VALUE) <= (1 + Integer.MIN_VALUE)) return false; // Reject P - 1 and non-canonical encodings (i.e. >= P) if (t1 == 0 && (y0 + Integer.MIN_VALUE) >= (P[0] - 1 + Integer.MIN_VALUE)) return false; return true; } private static boolean checkPointOrderVar(PointAffine p) { PointProjective r = new PointProjective(); scalarMultOrderVar(p, r); return normalizeToNeutralElementVar(r); } private static boolean checkPointVar(byte[] p) { if ((p[POINT_BYTES - 1] & 0x7F) != 0x00) { return false; } if (Codec.decode32(p, 52) != P[13]) { return true; } int[] t = new int[COORD_INTS]; Codec.decode32(p, 0, t, 0, COORD_INTS); return !Nat.gte(COORD_INTS, t, P); } private static byte[] copy(byte[] buf, int off, int len) { byte[] result = new byte[len]; System.arraycopy(buf, off, result, 0, len); return result; } public static Xof createPrehash() { return createXof(); } private static Xof createXof() { return new SHAKEDigest(256); } private static boolean decodePointVar(byte[] p, boolean negate, PointAffine r) { int x_0 = (p[POINT_BYTES - 1] & 0x80) >>> 7; F.decode(p, r.y); int[] u = F.create(); int[] v = F.create(); F.sqr(r.y, u); F.mul(u, C_d, v); F.negate(u, u); F.addOne(u); F.addOne(v); if (!F.sqrtRatioVar(u, v, r.x)) { return false; } F.normalize(r.x); if (x_0 == 1 && F.isZeroVar(r.x)) { return false; } if (negate ^ (x_0 != (r.x[0] & 1))) { F.negate(r.x, r.x); F.normalize(r.x); } return true; } private static void dom4(Xof d, byte phflag, byte[] ctx) { // assert ctx != null; int n = DOM4_PREFIX.length; byte[] t = new byte[n + 2 + ctx.length]; System.arraycopy(DOM4_PREFIX, 0, t, 0, n); t[n] = phflag; t[n + 1] = (byte)ctx.length; System.arraycopy(ctx, 0, t, n + 2, ctx.length); d.update(t, 0, t.length); } private static void encodePoint(PointAffine p, byte[] r, int rOff) { F.encode(p.y, r, rOff); r[rOff + POINT_BYTES - 1] = (byte)((p.x[0] & 1) << 7); } public static void encodePublicPoint(PublicPoint publicPoint, byte[] pk, int pkOff) { F.encode(publicPoint.data, F.SIZE, pk, pkOff); pk[pkOff + POINT_BYTES - 1] = (byte)((publicPoint.data[0] & 1) << 7); } private static int encodeResult(PointProjective p, byte[] r, int rOff) { PointAffine q = new PointAffine(); normalizeToAffine(p, q); int result = checkPoint(q); encodePoint(q, r, rOff); return result; } private static PublicPoint exportPoint(PointAffine p) { int[] data = new int[F.SIZE * 2]; F.copy(p.x, 0, data, 0); F.copy(p.y, 0, data, F.SIZE); return new PublicPoint(data); } public static void generatePrivateKey(SecureRandom random, byte[] k) { if (k.length != SECRET_KEY_SIZE) { throw new IllegalArgumentException("k"); } random.nextBytes(k); } public static void generatePublicKey(byte[] sk, int skOff, byte[] pk, int pkOff) { Xof d = createXof(); byte[] h = new byte[SCALAR_BYTES * 2]; d.update(sk, skOff, SECRET_KEY_SIZE); d.doFinal(h, 0, h.length); byte[] s = new byte[SCALAR_BYTES]; pruneScalar(h, 0, s); scalarMultBaseEncoded(s, pk, pkOff); } public static PublicPoint generatePublicKey(byte[] sk, int skOff) { Xof d = createXof(); byte[] h = new byte[SCALAR_BYTES * 2]; d.update(sk, skOff, SECRET_KEY_SIZE); d.doFinal(h, 0, h.length); byte[] s = new byte[SCALAR_BYTES]; pruneScalar(h, 0, s); PointProjective p = new PointProjective(); scalarMultBase(s, p); PointAffine q = new PointAffine(); normalizeToAffine(p, q); if (0 == checkPoint(q)) { throw new IllegalStateException(); } return exportPoint(q); } private static int getWindow4(int[] x, int n) { int w = n >>> 3, b = (n & 7) << 2; return (x[w] >>> b) & 15; } private static void implSign(Xof d, byte[] h, byte[] s, byte[] pk, int pkOff, byte[] ctx, byte phflag, byte[] m, int mOff, int mLen, byte[] sig, int sigOff) { dom4(d, phflag, ctx); d.update(h, SCALAR_BYTES, SCALAR_BYTES); d.update(m, mOff, mLen); d.doFinal(h, 0, h.length); byte[] r = Scalar448.reduce912(h); byte[] R = new byte[POINT_BYTES]; scalarMultBaseEncoded(r, R, 0); dom4(d, phflag, ctx); d.update(R, 0, POINT_BYTES); d.update(pk, pkOff, POINT_BYTES); d.update(m, mOff, mLen); d.doFinal(h, 0, h.length); byte[] k = Scalar448.reduce912(h); byte[] S = calculateS(r, k, s); System.arraycopy(R, 0, sig, sigOff, POINT_BYTES); System.arraycopy(S, 0, sig, sigOff + POINT_BYTES, SCALAR_BYTES); } private static void implSign(byte[] sk, int skOff, byte[] ctx, byte phflag, byte[] m, int mOff, int mLen, byte[] sig, int sigOff) { if (!checkContextVar(ctx)) { throw new IllegalArgumentException("ctx"); } Xof d = createXof(); byte[] h = new byte[SCALAR_BYTES * 2]; d.update(sk, skOff, SECRET_KEY_SIZE); d.doFinal(h, 0, h.length); byte[] s = new byte[SCALAR_BYTES]; pruneScalar(h, 0, s); byte[] pk = new byte[POINT_BYTES]; scalarMultBaseEncoded(s, pk, 0); implSign(d, h, s, pk, 0, ctx, phflag, m, mOff, mLen, sig, sigOff); } private static void implSign(byte[] sk, int skOff, byte[] pk, int pkOff, byte[] ctx, byte phflag, byte[] m, int mOff, int mLen, byte[] sig, int sigOff) { if (!checkContextVar(ctx)) { throw new IllegalArgumentException("ctx"); } Xof d = createXof(); byte[] h = new byte[SCALAR_BYTES * 2]; d.update(sk, skOff, SECRET_KEY_SIZE); d.doFinal(h, 0, h.length); byte[] s = new byte[SCALAR_BYTES]; pruneScalar(h, 0, s); implSign(d, h, s, pk, pkOff, ctx, phflag, m, mOff, mLen, sig, sigOff); } private static boolean implVerify(byte[] sig, int sigOff, byte[] pk, int pkOff, byte[] ctx, byte phflag, byte[] m, int mOff, int mLen) { if (!checkContextVar(ctx)) { throw new IllegalArgumentException("ctx"); } byte[] R = copy(sig, sigOff, POINT_BYTES); byte[] S = copy(sig, sigOff + POINT_BYTES, SCALAR_BYTES); byte[] A = copy(pk, pkOff, PUBLIC_KEY_SIZE); if (!checkPointVar(R)) { return false; } int[] nS = new int[SCALAR_INTS]; if (!Scalar448.checkVar(S, nS)) { return false; } if (!checkPointFullVar(A)) return false; PointAffine pR = new PointAffine(); if (!decodePointVar(R, true, pR)) { return false; } PointAffine pA = new PointAffine(); if (!decodePointVar(A, true, pA)) { return false; } Xof d = createXof(); byte[] h = new byte[SCALAR_BYTES * 2]; dom4(d, phflag, ctx); d.update(R, 0, POINT_BYTES); d.update(A, 0, POINT_BYTES); d.update(m, mOff, mLen); d.doFinal(h, 0, h.length); byte[] k = Scalar448.reduce912(h); int[] nA = new int[SCALAR_INTS]; Scalar448.decode(k, nA); int[] v0 = new int[8]; int[] v1 = new int[8]; Scalar448.reduceBasisVar(nA, v0, v1); Scalar448.multiply225Var(nS, v1, nS); PointProjective pZ = new PointProjective(); scalarMultStraus225Var(nS, v0, pA, v1, pR, pZ); return normalizeToNeutralElementVar(pZ); } private static boolean implVerify(byte[] sig, int sigOff, PublicPoint publicPoint, byte[] ctx, byte phflag, byte[] m, int mOff, int mLen) { if (!checkContextVar(ctx)) { throw new IllegalArgumentException("ctx"); } byte[] R = copy(sig, sigOff, POINT_BYTES); byte[] S = copy(sig, sigOff + POINT_BYTES, SCALAR_BYTES); if (!checkPointVar(R)) { return false; } int[] nS = new int[SCALAR_INTS]; if (!Scalar448.checkVar(S, nS)) { return false; } PointAffine pR = new PointAffine(); if (!decodePointVar(R, true, pR)) { return false; } PointAffine pA = new PointAffine(); F.negate(publicPoint.data, pA.x); F.copy(publicPoint.data, F.SIZE, pA.y, 0); byte[] A = new byte[PUBLIC_KEY_SIZE]; encodePublicPoint(publicPoint, A, 0); Xof d = createXof(); byte[] h = new byte[SCALAR_BYTES * 2]; dom4(d, phflag, ctx); d.update(R, 0, POINT_BYTES); d.update(A, 0, POINT_BYTES); d.update(m, mOff, mLen); d.doFinal(h, 0, h.length); byte[] k = Scalar448.reduce912(h); int[] nA = new int[SCALAR_INTS]; Scalar448.decode(k, nA); int[] v0 = new int[8]; int[] v1 = new int[8]; Scalar448.reduceBasisVar(nA, v0, v1); Scalar448.multiply225Var(nS, v1, nS); PointProjective pZ = new PointProjective(); scalarMultStraus225Var(nS, v0, pA, v1, pR, pZ); return normalizeToNeutralElementVar(pZ); } private static void invertZs(PointProjective[] points) { int count = points.length; int[] cs = F.createTable(count); int[] u = F.create(); F.copy(points[0].z, 0, u, 0); F.copy(u, 0, cs, 0); int i = 0; while (++i < count) { F.mul(u, points[i].z, u); F.copy(u, 0, cs, i * F.SIZE); } F.invVar(u, u); --i; int[] t = F.create(); while (i > 0) { int j = i--; F.copy(cs, i * F.SIZE, t, 0); F.mul(t, u, t); F.mul(u, points[j].z, u); F.copy(t, 0, points[j].z, 0); } F.copy(u, 0, points[0].z, 0); } private static void normalizeToAffine(PointProjective p, PointAffine r) { F.inv(p.z, r.y); F.mul(r.y, p.x, r.x); F.mul(r.y, p.y, r.y); F.normalize(r.x); F.normalize(r.y); } private static boolean normalizeToNeutralElementVar(PointProjective p) { F.normalize(p.x); F.normalize(p.y); F.normalize(p.z); return F.isZeroVar(p.x) && !F.isZeroVar(p.y) && F.areEqualVar(p.y, p.z); } private static void pointAdd(PointAffine p, PointProjective r, PointTemp t) { int[] b = t.r1; int[] c = t.r2; int[] d = t.r3; int[] e = t.r4; int[] f = t.r5; int[] g = t.r6; int[] h = t.r7; F.sqr(r.z, b); F.mul(p.x, r.x, c); F.mul(p.y, r.y, d); F.mul(c, d, e); F.mul(e, C_d, e); // F.apm(b, e, f, g); F.add(b, e, f); F.sub(b, e, g); F.add(p.y, p.x, h); F.add(r.y, r.x, e); F.mul(h, e, h); // F.apm(d, c, b, e); F.add(d, c, b); F.sub(d, c, e); F.carry(b); F.sub(h, b, h); F.mul(h, r.z, h); F.mul(e, r.z, e); F.mul(f, h, r.x); F.mul(e, g, r.y); F.mul(f, g, r.z); } private static void pointAdd(PointProjective p, PointProjective r, PointTemp t) { int[] a = t.r0; int[] b = t.r1; int[] c = t.r2; int[] d = t.r3; int[] e = t.r4; int[] f = t.r5; int[] g = t.r6; int[] h = t.r7; F.mul(p.z, r.z, a); F.sqr(a, b); F.mul(p.x, r.x, c); F.mul(p.y, r.y, d); F.mul(c, d, e); F.mul(e, C_d, e); // F.apm(b, e, f, g); F.add(b, e, f); F.sub(b, e, g); F.add(p.y, p.x, h); F.add(r.y, r.x, e); F.mul(h, e, h); // F.apm(d, c, b, e); F.add(d, c, b); F.sub(d, c, e); F.carry(b); F.sub(h, b, h); F.mul(h, a, h); F.mul(e, a, e); F.mul(f, h, r.x); F.mul(e, g, r.y); F.mul(f, g, r.z); } private static void pointAddVar(boolean negate, PointAffine p, PointProjective r, PointTemp t) { int[] b = t.r1; int[] c = t.r2; int[] d = t.r3; int[] e = t.r4; int[] f = t.r5; int[] g = t.r6; int[] h = t.r7; int[] nb, ne, nf, ng; if (negate) { nb = e; ne = b; nf = g; ng = f; F.sub(p.y, p.x, h); } else { nb = b; ne = e; nf = f; ng = g; F.add(p.y, p.x, h); } F.sqr(r.z, b); F.mul(p.x, r.x, c); F.mul(p.y, r.y, d); F.mul(c, d, e); F.mul(e, C_d, e); // F.apm(b, e, nf, ng); F.add(b, e, nf); F.sub(b, e, ng); F.add(r.y, r.x, e); F.mul(h, e, h); // F.apm(d, c, nb, e); F.add(d, c, nb); F.sub(d, c, ne); F.carry(nb); F.sub(h, b, h); F.mul(h, r.z, h); F.mul(e, r.z, e); F.mul(f, h, r.x); F.mul(e, g, r.y); F.mul(f, g, r.z); } private static void pointAddVar(boolean negate, PointProjective p, PointProjective r, PointTemp t) { int[] a = t.r0; int[] b = t.r1; int[] c = t.r2; int[] d = t.r3; int[] e = t.r4; int[] f = t.r5; int[] g = t.r6; int[] h = t.r7; int[] nb, ne, nf, ng; if (negate) { nb = e; ne = b; nf = g; ng = f; F.sub(p.y, p.x, h); } else { nb = b; ne = e; nf = f; ng = g; F.add(p.y, p.x, h); } F.mul(p.z, r.z, a); F.sqr(a, b); F.mul(p.x, r.x, c); F.mul(p.y, r.y, d); F.mul(c, d, e); F.mul(e, C_d, e); // F.apm(b, e, nf, ng); F.add(b, e, nf); F.sub(b, e, ng); F.add(r.y, r.x, e); F.mul(h, e, h); // F.apm(d, c, nb, ne); F.add(d, c, nb); F.sub(d, c, ne); F.carry(nb); F.sub(h, b, h); F.mul(h, a, h); F.mul(e, a, e); F.mul(f, h, r.x); F.mul(e, g, r.y); F.mul(f, g, r.z); } private static void pointCopy(PointAffine p, PointProjective r) { F.copy(p.x, 0, r.x, 0); F.copy(p.y, 0, r.y, 0); F.one(r.z); } private static void pointCopy(PointProjective p, PointProjective r) { F.copy(p.x, 0, r.x, 0); F.copy(p.y, 0, r.y, 0); F.copy(p.z, 0, r.z, 0); } private static void pointDouble(PointProjective r, PointTemp t) { int[] b = t.r1; int[] c = t.r2; int[] d = t.r3; int[] e = t.r4; int[] h = t.r7; int[] j = t.r0; F.add(r.x, r.y, b); F.sqr(b, b); F.sqr(r.x, c); F.sqr(r.y, d); F.add(c, d, e); F.carry(e); F.sqr(r.z, h); F.add(h, h, h); F.carry(h); F.sub(e, h, j); F.sub(b, e, b); F.sub(c, d, c); F.mul(b, j, r.x); F.mul(e, c, r.y); F.mul(e, j, r.z); } private static void pointLookup(int block, int index, PointAffine p) { // assert 0 <= block && block < PRECOMP_BLOCKS; // assert 0 <= index && index < PRECOMP_POINTS; int off = block * PRECOMP_POINTS * 2 * F.SIZE; for (int i = 0; i < PRECOMP_POINTS; ++i) { int cond = ((i ^ index) - 1) >> 31; F.cmov(cond, PRECOMP_BASE_COMB, off, p.x, 0); off += F.SIZE; F.cmov(cond, PRECOMP_BASE_COMB, off, p.y, 0); off += F.SIZE; } } private static void pointLookup(int[] x, int n, int[] table, PointProjective r) { // TODO This method is currently hardcoded to 4-bit windows and 8 precomputed points int w = getWindow4(x, n); int sign = (w >>> (4 - 1)) ^ 1; int abs = (w ^ -sign) & 7; // assert sign == 0 || sign == 1; // assert 0 <= abs && abs < 8; for (int i = 0, off = 0; i < 8; ++i) { int cond = ((i ^ abs) - 1) >> 31; F.cmov(cond, table, off, r.x, 0); off += F.SIZE; F.cmov(cond, table, off, r.y, 0); off += F.SIZE; F.cmov(cond, table, off, r.z, 0); off += F.SIZE; } F.cnegate(sign, r.x); } private static void pointLookup15(int[] table, PointProjective r) { int off = F.SIZE * 3 * 7; F.copy(table, off, r.x, 0); off += F.SIZE; F.copy(table, off, r.y, 0); off += F.SIZE; F.copy(table, off, r.z, 0); } private static int[] pointPrecompute(PointProjective p, int count, PointTemp t) { // assert count > 0; PointProjective q = new PointProjective(); pointCopy(p, q); PointProjective d = new PointProjective(); pointCopy(p, d); pointDouble(d, t); int[] table = F.createTable(count * 3); int off = 0; int i = 0; for (;;) { F.copy(q.x, 0, table, off); off += F.SIZE; F.copy(q.y, 0, table, off); off += F.SIZE; F.copy(q.z, 0, table, off); off += F.SIZE; if (++i == count) { break; } pointAdd(d, q, t); } return table; } private static void pointPrecompute(PointAffine p, PointProjective[] points, int pointsOff, int pointsLen, PointTemp t) { // assert pointsLen > 0; PointProjective d = new PointProjective(); pointCopy(p, d); pointDouble(d, t); points[pointsOff] = new PointProjective(); pointCopy(p, points[pointsOff]); for (int i = 1; i < pointsLen; ++i) { points[pointsOff + i] = new PointProjective(); pointCopy(points[pointsOff + i - 1], points[pointsOff + i]); pointAdd(d, points[pointsOff + i], t); } } private static void pointSetNeutral(PointProjective p) { F.zero(p.x); F.one(p.y); F.one(p.z); } public static void precompute() { synchronized (PRECOMP_LOCK) { if (PRECOMP_BASE_COMB != null) { return; } // assert PRECOMP_RANGE > 448; // assert PRECOMP_RANGE < 480; int wnafPoints = 1 << (WNAF_WIDTH_BASE - 2); int combPoints = PRECOMP_BLOCKS * PRECOMP_POINTS; int totalPoints = wnafPoints * 2 + combPoints; PointProjective[] points = new PointProjective[totalPoints]; PointTemp t = new PointTemp(); PointAffine B = new PointAffine(); F.copy(B_x, 0, B.x, 0); F.copy(B_y, 0, B.y, 0); pointPrecompute(B, points, 0, wnafPoints, t); PointAffine B225 = new PointAffine(); F.copy(B225_x, 0, B225.x, 0); F.copy(B225_y, 0, B225.y, 0); pointPrecompute(B225, points, wnafPoints, wnafPoints, t); PointProjective p = new PointProjective(); pointCopy(B, p); int pointsIndex = wnafPoints * 2; PointProjective[] toothPowers = new PointProjective[PRECOMP_TEETH]; for (int tooth = 0; tooth < PRECOMP_TEETH; ++tooth) { toothPowers[tooth] = new PointProjective(); } for (int block = 0; block < PRECOMP_BLOCKS; ++block) { PointProjective sum = points[pointsIndex++] = new PointProjective(); for (int tooth = 0; tooth < PRECOMP_TEETH; ++tooth) { if (tooth == 0) { pointCopy(p, sum); } else { pointAdd(p, sum, t); } pointDouble(p, t); pointCopy(p, toothPowers[tooth]); if (block + tooth != PRECOMP_BLOCKS + PRECOMP_TEETH - 2) { for (int spacing = 1; spacing < PRECOMP_SPACING; ++spacing) { pointDouble(p, t); } } } F.negate(sum.x, sum.x); for (int tooth = 0; tooth < (PRECOMP_TEETH - 1); ++tooth) { int size = 1 << tooth; for (int j = 0; j < size; ++j, ++pointsIndex) { points[pointsIndex] = new PointProjective(); pointCopy(points[pointsIndex - size], points[pointsIndex]); pointAdd(toothPowers[tooth], points[pointsIndex], t); } } } // assert pointsIndex == totalPoints; invertZs(points); PRECOMP_BASE_WNAF = new PointAffine[wnafPoints]; for (int i = 0; i < wnafPoints; ++i) { PointProjective q = points[i]; PointAffine r = PRECOMP_BASE_WNAF[i] = new PointAffine(); F.mul(q.x, q.z, r.x); F.normalize(r.x); F.mul(q.y, q.z, r.y); F.normalize(r.y); } PRECOMP_BASE225_WNAF = new PointAffine[wnafPoints]; for (int i = 0; i < wnafPoints; ++i) { PointProjective q = points[wnafPoints + i]; PointAffine r = PRECOMP_BASE225_WNAF[i] = new PointAffine(); F.mul(q.x, q.z, r.x); F.normalize(r.x); F.mul(q.y, q.z, r.y); F.normalize(r.y); } PRECOMP_BASE_COMB = F.createTable(combPoints * 2); int off = 0; for (int i = wnafPoints * 2; i < totalPoints; ++i) { PointProjective q = points[i]; F.mul(q.x, q.z, q.x); F.normalize(q.x); F.mul(q.y, q.z, q.y); F.normalize(q.y); F.copy(q.x, 0, PRECOMP_BASE_COMB, off); off += F.SIZE; F.copy(q.y, 0, PRECOMP_BASE_COMB, off); off += F.SIZE; } // assert off == PRECOMP_BASE_COMB.length; } } private static void pruneScalar(byte[] n, int nOff, byte[] r) { System.arraycopy(n, nOff, r, 0, SCALAR_BYTES - 1); r[0] &= 0xFC; r[SCALAR_BYTES - 2] |= 0x80; r[SCALAR_BYTES - 1] = 0x00; } private static void scalarMult(byte[] k, PointProjective p, PointProjective r) { int[] n = new int[SCALAR_INTS + 1]; Scalar448.decode(k, n); Scalar448.toSignedDigits(449, n, n); // NOTE: Bit 448 is handled explicitly by an initial addition // assert n[SCALAR_INTS] == 1; PointProjective q = new PointProjective(); PointTemp t = new PointTemp(); int[] table = pointPrecompute(p, 8, t); // Replace first 4 doublings (2^4 * P) with 1 addition (P + 15 * P) pointLookup15(table, r); pointAdd(p, r, t); int w = 111; for (;;) { pointLookup(n, w, table, q); pointAdd(q, r, t); if (--w < 0) { break; } for (int i = 0; i < 4; ++i) { pointDouble(r, t); } } } private static void scalarMultBase(byte[] k, PointProjective r) { // Equivalent (but much slower) // PointProjective p = new PointProjective(); // F.copy(B_x, 0, p.x, 0); // F.copy(B_y, 0, p.y, 0); // F.one(p.z); // scalarMult(k, p, r); precompute(); int[] n = new int[SCALAR_INTS + 1]; Scalar448.decode(k, n); Scalar448.toSignedDigits(PRECOMP_RANGE, n, n); PointAffine p = new PointAffine(); PointTemp t = new PointTemp(); pointSetNeutral(r); int cOff = PRECOMP_SPACING - 1; for (;;) { int tPos = cOff; for (int block = 0; block < PRECOMP_BLOCKS; ++block) { int w = 0; for (int tooth = 0; tooth < PRECOMP_TEETH; ++tooth) { int tBit = n[tPos >>> 5] >>> (tPos & 0x1F); w &= ~(1 << tooth); w ^= (tBit << tooth); tPos += PRECOMP_SPACING; } int sign = (w >>> (PRECOMP_TEETH - 1)) & 1; int abs = (w ^ -sign) & PRECOMP_MASK; // assert sign == 0 || sign == 1; // assert 0 <= abs && abs < PRECOMP_POINTS; pointLookup(block, abs, p); F.cnegate(sign, p.x); pointAdd(p, r, t); } if (--cOff < 0) { break; } pointDouble(r, t); } } private static void scalarMultBaseEncoded(byte[] k, byte[] r, int rOff) { PointProjective p = new PointProjective(); scalarMultBase(k, p); if (0 == encodeResult(p, r, rOff)) { throw new IllegalStateException(); } } /** * NOTE: Only for use by X448 */ public static void scalarMultBaseXY(X448.Friend friend, byte[] k, int kOff, int[] x, int[] y) { if (null == friend) { throw new NullPointerException("This method is only for use by X448"); } byte[] n = new byte[SCALAR_BYTES]; pruneScalar(k, kOff, n); PointProjective p = new PointProjective(); scalarMultBase(n, p); if (0 == checkPoint(p)) { throw new IllegalStateException(); } F.copy(p.x, 0, x, 0); F.copy(p.y, 0, y, 0); } private static void scalarMultOrderVar(PointAffine p, PointProjective r) { byte[] ws_p = new byte[447]; // NOTE: WNAF_WIDTH_225 because of the special structure of the order Scalar448.getOrderWnafVar(WNAF_WIDTH_225, ws_p); int count = 1 << (WNAF_WIDTH_225 - 2); PointProjective[] tp = new PointProjective[count]; PointTemp t = new PointTemp(); pointPrecompute(p, tp, 0, count, t); pointSetNeutral(r); for (int bit = 446;;) { int wp = ws_p[bit]; if (wp != 0) { int index = (wp >> 1) ^ (wp >> 31); pointAddVar(wp < 0, tp[index], r, t); } if (--bit < 0) { break; } pointDouble(r, t); } } private static void scalarMultStraus225Var(int[] nb, int[] np, PointAffine p, int[] nq, PointAffine q, PointProjective r) { // assert nb.length == SCALAR_INTS; // assert nb[SCALAR_INTS - 1] >>> 30 == 0; // assert np.length == 8; // assert np[7] >> 31 == np[7]; // assert nq.length == 8; // assert nq[7] >> 31 == nq[7]; precompute(); byte[] ws_b = new byte[450]; byte[] ws_p = new byte[225]; byte[] ws_q = new byte[225]; Wnaf.getSignedVar(nb, WNAF_WIDTH_BASE, ws_b); Wnaf.getSignedVar(np, WNAF_WIDTH_225, ws_p); Wnaf.getSignedVar(nq, WNAF_WIDTH_225, ws_q); int count = 1 << (WNAF_WIDTH_225 - 2); PointProjective[] tp = new PointProjective[count]; PointProjective[] tq = new PointProjective[count]; PointTemp t = new PointTemp(); pointPrecompute(p, tp, 0, count, t); pointPrecompute(q, tq, 0, count, t); pointSetNeutral(r); int bit = 225; while (--bit >= 0) { if ((ws_b[bit] | ws_b[225 + bit] | ws_p[bit] | ws_q[bit]) != 0) { break; } } for (; bit >= 0; --bit) { int wb = ws_b[bit]; if (wb != 0) { int index = (wb >> 1) ^ (wb >> 31); pointAddVar(wb < 0, PRECOMP_BASE_WNAF[index], r, t); } int wb225 = ws_b[225 + bit]; if (wb225 != 0) { int index = (wb225 >> 1) ^ (wb225 >> 31); pointAddVar(wb225 < 0, PRECOMP_BASE225_WNAF[index], r, t); } int wp = ws_p[bit]; if (wp != 0) { int index = (wp >> 1) ^ (wp >> 31); pointAddVar(wp < 0, tp[index], r, t); } int wq = ws_q[bit]; if (wq != 0) { int index = (wq >> 1) ^ (wq >> 31); pointAddVar(wq < 0, tq[index], r, t); } pointDouble(r, t); } // NOTE: Together with the final pointDouble of the loop, this clears the cofactor of 4 pointDouble(r, t); } public static void sign(byte[] sk, int skOff, byte[] ctx, byte[] m, int mOff, int mLen, byte[] sig, int sigOff) { byte phflag = 0x00; implSign(sk, skOff, ctx, phflag, m, mOff, mLen, sig, sigOff); } public static void sign(byte[] sk, int skOff, byte[] pk, int pkOff, byte[] ctx, byte[] m, int mOff, int mLen, byte[] sig, int sigOff) { byte phflag = 0x00; implSign(sk, skOff, pk, pkOff, ctx, phflag, m, mOff, mLen, sig, sigOff); } public static void signPrehash(byte[] sk, int skOff, byte[] ctx, byte[] ph, int phOff, byte[] sig, int sigOff) { byte phflag = 0x01; implSign(sk, skOff, ctx, phflag, ph, phOff, PREHASH_SIZE, sig, sigOff); } public static void signPrehash(byte[] sk, int skOff, byte[] pk, int pkOff, byte[] ctx, byte[] ph, int phOff, byte[] sig, int sigOff) { byte phflag = 0x01; implSign(sk, skOff, pk, pkOff, ctx, phflag, ph, phOff, PREHASH_SIZE, sig, sigOff); } public static void signPrehash(byte[] sk, int skOff, byte[] ctx, Xof ph, byte[] sig, int sigOff) { byte[] m = new byte[PREHASH_SIZE]; if (PREHASH_SIZE != ph.doFinal(m, 0, PREHASH_SIZE)) { throw new IllegalArgumentException("ph"); } byte phflag = 0x01; implSign(sk, skOff, ctx, phflag, m, 0, m.length, sig, sigOff); } public static void signPrehash(byte[] sk, int skOff, byte[] pk, int pkOff, byte[] ctx, Xof ph, byte[] sig, int sigOff) { byte[] m = new byte[PREHASH_SIZE]; if (PREHASH_SIZE != ph.doFinal(m, 0, PREHASH_SIZE)) { throw new IllegalArgumentException("ph"); } byte phflag = 0x01; implSign(sk, skOff, pk, pkOff, ctx, phflag, m, 0, m.length, sig, sigOff); } public static boolean validatePublicKeyFull(byte[] pk, int pkOff) { byte[] A = copy(pk, pkOff, PUBLIC_KEY_SIZE); if (!checkPointFullVar(A)) { return false; } PointAffine pA = new PointAffine(); if (!decodePointVar(A, false, pA)) { return false; } return checkPointOrderVar(pA); } public static PublicPoint validatePublicKeyFullExport(byte[] pk, int pkOff) { byte[] A = copy(pk, pkOff, PUBLIC_KEY_SIZE); if (!checkPointFullVar(A)) { return null; } PointAffine pA = new PointAffine(); if (!decodePointVar(A, false, pA)) { return null; } if (!checkPointOrderVar(pA)) { return null; } return exportPoint(pA); } public static boolean validatePublicKeyPartial(byte[] pk, int pkOff) { byte[] A = copy(pk, pkOff, PUBLIC_KEY_SIZE); if (!checkPointFullVar(A)) { return false; } PointAffine pA = new PointAffine(); return decodePointVar(A, false, pA); } public static PublicPoint validatePublicKeyPartialExport(byte[] pk, int pkOff) { byte[] A = copy(pk, pkOff, PUBLIC_KEY_SIZE); if (!checkPointFullVar(A)) { return null; } PointAffine pA = new PointAffine(); if (!decodePointVar(A, false, pA)) { return null; } return exportPoint(pA); } public static boolean verify(byte[] sig, int sigOff, byte[] pk, int pkOff, byte[] ctx, byte[] m, int mOff, int mLen) { byte phflag = 0x00; return implVerify(sig, sigOff, pk, pkOff, ctx, phflag, m, mOff, mLen); } public static boolean verify(byte[] sig, int sigOff, PublicPoint publicPoint, byte[] ctx, byte[] m, int mOff, int mLen) { byte phflag = 0x00; return implVerify(sig, sigOff, publicPoint, ctx, phflag, m, mOff, mLen); } public static boolean verifyPrehash(byte[] sig, int sigOff, byte[] pk, int pkOff, byte[] ctx, byte[] ph, int phOff) { byte phflag = 0x01; return implVerify(sig, sigOff, pk, pkOff, ctx, phflag, ph, phOff, PREHASH_SIZE); } public static boolean verifyPrehash(byte[] sig, int sigOff, PublicPoint publicPoint, byte[] ctx, byte[] ph, int phOff) { byte phflag = 0x01; return implVerify(sig, sigOff, publicPoint, ctx, phflag, ph, phOff, PREHASH_SIZE); } public static boolean verifyPrehash(byte[] sig, int sigOff, byte[] pk, int pkOff, byte[] ctx, Xof ph) { byte[] m = new byte[PREHASH_SIZE]; if (PREHASH_SIZE != ph.doFinal(m, 0, PREHASH_SIZE)) { throw new IllegalArgumentException("ph"); } byte phflag = 0x01; return implVerify(sig, sigOff, pk, pkOff, ctx, phflag, m, 0, m.length); } public static boolean verifyPrehash(byte[] sig, int sigOff, PublicPoint publicPoint, byte[] ctx, Xof ph) { byte[] m = new byte[PREHASH_SIZE]; if (PREHASH_SIZE != ph.doFinal(m, 0, PREHASH_SIZE)) { throw new IllegalArgumentException("ph"); } byte phflag = 0x01; return implVerify(sig, sigOff, publicPoint, ctx, phflag, m, 0, m.length); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy