All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.codelibs.elasticsearch.taste.similarity.AbstractSimilarity Maven / Gradle / Ivy

/**
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.codelibs.elasticsearch.taste.similarity;

import java.util.Collection;
import java.util.concurrent.Callable;

import org.codelibs.elasticsearch.taste.common.RefreshHelper;
import org.codelibs.elasticsearch.taste.common.Refreshable;
import org.codelibs.elasticsearch.taste.common.Weighting;
import org.codelibs.elasticsearch.taste.model.DataModel;
import org.codelibs.elasticsearch.taste.model.PreferenceArray;

import com.google.common.base.Preconditions;

/** Abstract superclass encapsulating functionality that is common to most implementations in this package. */
abstract class AbstractSimilarity extends AbstractItemSimilarity implements
        UserSimilarity {

    private PreferenceInferrer inferrer;

    private final boolean weighted;

    private final boolean centerData;

    private int cachedNumItems;

    private int cachedNumUsers;

    private final RefreshHelper refreshHelper;

    /**
     * 

* Creates a possibly weighted {@link AbstractSimilarity}. *

*/ AbstractSimilarity(final DataModel dataModel, final Weighting weighting, final boolean centerData) { super(dataModel); weighted = weighting == Weighting.WEIGHTED; this.centerData = centerData; cachedNumItems = dataModel.getNumItems(); cachedNumUsers = dataModel.getNumUsers(); refreshHelper = new RefreshHelper(new Callable() { @Override public Object call() { cachedNumItems = dataModel.getNumItems(); cachedNumUsers = dataModel.getNumUsers(); return null; } }); } final PreferenceInferrer getPreferenceInferrer() { return inferrer; } @Override public final void setPreferenceInferrer(final PreferenceInferrer inferrer) { Preconditions.checkArgument(inferrer != null, "inferrer is null"); refreshHelper.addDependency(inferrer); refreshHelper.removeDependency(this.inferrer); this.inferrer = inferrer; } final boolean isWeighted() { return weighted; } /** *

* Several subclasses in this package implement this method to actually compute the similarity from figures * computed over users or items. Note that the computations in this class "center" the data, such that X and * Y's mean are 0. *

* *

* Note that the sum of all X and Y values must then be 0. This value isn't passed down into the standard * similarity computations as a result. *

* * @param n * total number of users or items * @param sumXY * sum of product of user/item preference values, over all items/users preferred by both * users/items * @param sumX2 * sum of the square of user/item preference values, over the first item/user * @param sumY2 * sum of the square of the user/item preference values, over the second item/user * @param sumXYdiff2 * sum of squares of differences in X and Y values * @return similarity value between -1.0 and 1.0, inclusive, or {@link Double#NaN} if no similarity can be * computed (e.g. when no items have been rated by both users */ abstract double computeResult(int n, double sumXY, double sumX2, double sumY2, double sumXYdiff2); @Override public double userSimilarity(final long userID1, final long userID2) { final DataModel dataModel = getDataModel(); final PreferenceArray xPrefs = dataModel .getPreferencesFromUser(userID1); final PreferenceArray yPrefs = dataModel .getPreferencesFromUser(userID2); final int xLength = xPrefs.length(); final int yLength = yPrefs.length(); if (xLength == 0 || yLength == 0) { return Double.NaN; } long xIndex = xPrefs.getItemID(0); long yIndex = yPrefs.getItemID(0); int xPrefIndex = 0; int yPrefIndex = 0; double sumX = 0.0; double sumX2 = 0.0; double sumY = 0.0; double sumY2 = 0.0; double sumXY = 0.0; double sumXYdiff2 = 0.0; int count = 0; final boolean hasInferrer = inferrer != null; while (true) { final int compare = xIndex < yIndex ? -1 : xIndex > yIndex ? 1 : 0; if (hasInferrer || compare == 0) { double x; double y; if (xIndex == yIndex) { // Both users expressed a preference for the item x = xPrefs.getValue(xPrefIndex); y = yPrefs.getValue(yPrefIndex); } else { // Only one user expressed a preference, but infer the other one's preference and tally // as if the other user expressed that preference if (compare < 0) { // X has a value; infer Y's x = xPrefs.getValue(xPrefIndex); y = inferrer.inferPreference(userID2, xIndex); } else { // compare > 0 // Y has a value; infer X's x = inferrer.inferPreference(userID1, yIndex); y = yPrefs.getValue(yPrefIndex); } } sumXY += x * y; sumX += x; sumX2 += x * x; sumY += y; sumY2 += y * y; final double diff = x - y; sumXYdiff2 += diff * diff; count++; } if (compare <= 0) { if (++xPrefIndex >= xLength) { if (hasInferrer) { // Must count other Ys; pretend next X is far away if (yIndex == Long.MAX_VALUE) { // ... but stop if both are done! break; } xIndex = Long.MAX_VALUE; } else { break; } } else { xIndex = xPrefs.getItemID(xPrefIndex); } } if (compare >= 0) { if (++yPrefIndex >= yLength) { if (hasInferrer) { // Must count other Xs; pretend next Y is far away if (xIndex == Long.MAX_VALUE) { // ... but stop if both are done! break; } yIndex = Long.MAX_VALUE; } else { break; } } else { yIndex = yPrefs.getItemID(yPrefIndex); } } } // "Center" the data. If my math is correct, this'll do it. double result; if (centerData) { final double meanX = sumX / count; final double meanY = sumY / count; // double centeredSumXY = sumXY - meanY * sumX - meanX * sumY + n * meanX * meanY; final double centeredSumXY = sumXY - meanY * sumX; // double centeredSumX2 = sumX2 - 2.0 * meanX * sumX + n * meanX * meanX; final double centeredSumX2 = sumX2 - meanX * sumX; // double centeredSumY2 = sumY2 - 2.0 * meanY * sumY + n * meanY * meanY; final double centeredSumY2 = sumY2 - meanY * sumY; result = computeResult(count, centeredSumXY, centeredSumX2, centeredSumY2, sumXYdiff2); } else { result = computeResult(count, sumXY, sumX2, sumY2, sumXYdiff2); } if (!Double.isNaN(result)) { result = normalizeWeightResult(result, count, cachedNumItems); } return result; } @Override public final double itemSimilarity(final long itemID1, final long itemID2) { final DataModel dataModel = getDataModel(); final PreferenceArray xPrefs = dataModel.getPreferencesForItem(itemID1); final PreferenceArray yPrefs = dataModel.getPreferencesForItem(itemID2); final int xLength = xPrefs.length(); final int yLength = yPrefs.length(); if (xLength == 0 || yLength == 0) { return Double.NaN; } long xIndex = xPrefs.getUserID(0); long yIndex = yPrefs.getUserID(0); int xPrefIndex = 0; int yPrefIndex = 0; double sumX = 0.0; double sumX2 = 0.0; double sumY = 0.0; double sumY2 = 0.0; double sumXY = 0.0; double sumXYdiff2 = 0.0; int count = 0; // No, pref inferrers and transforms don't apply here. I think. while (true) { final int compare = xIndex < yIndex ? -1 : xIndex > yIndex ? 1 : 0; if (compare == 0) { // Both users expressed a preference for the item final double x = xPrefs.getValue(xPrefIndex); final double y = yPrefs.getValue(yPrefIndex); sumXY += x * y; sumX += x; sumX2 += x * x; sumY += y; sumY2 += y * y; final double diff = x - y; sumXYdiff2 += diff * diff; count++; } if (compare <= 0) { if (++xPrefIndex == xLength) { break; } xIndex = xPrefs.getUserID(xPrefIndex); } if (compare >= 0) { if (++yPrefIndex == yLength) { break; } yIndex = yPrefs.getUserID(yPrefIndex); } } double result; if (centerData) { // See comments above on these computations final double n = count; final double meanX = sumX / n; final double meanY = sumY / n; // double centeredSumXY = sumXY - meanY * sumX - meanX * sumY + n * meanX * meanY; final double centeredSumXY = sumXY - meanY * sumX; // double centeredSumX2 = sumX2 - 2.0 * meanX * sumX + n * meanX * meanX; final double centeredSumX2 = sumX2 - meanX * sumX; // double centeredSumY2 = sumY2 - 2.0 * meanY * sumY + n * meanY * meanY; final double centeredSumY2 = sumY2 - meanY * sumY; result = computeResult(count, centeredSumXY, centeredSumX2, centeredSumY2, sumXYdiff2); } else { result = computeResult(count, sumXY, sumX2, sumY2, sumXYdiff2); } if (!Double.isNaN(result)) { result = normalizeWeightResult(result, count, cachedNumUsers); } return result; } @Override public double[] itemSimilarities(final long itemID1, final long[] itemID2s) { final int length = itemID2s.length; final double[] result = new double[length]; for (int i = 0; i < length; i++) { result[i] = itemSimilarity(itemID1, itemID2s[i]); } return result; } final double normalizeWeightResult(final double result, final int count, final int num) { double normalizedResult = result; if (weighted) { final double scaleFactor = 1.0 - (double) count / (double) (num + 1); if (normalizedResult < 0.0) { normalizedResult = -1.0 + scaleFactor * (1.0 + normalizedResult); } else { normalizedResult = 1.0 - scaleFactor * (1.0 - normalizedResult); } } // Make sure the result is not accidentally a little outside [-1.0, 1.0] due to rounding: if (normalizedResult < -1.0) { normalizedResult = -1.0; } else if (normalizedResult > 1.0) { normalizedResult = 1.0; } return normalizedResult; } @Override public final void refresh(final Collection alreadyRefreshed) { super.refresh(alreadyRefreshed); refreshHelper.refresh(alreadyRefreshed); } @Override public final String toString() { return this.getClass().getSimpleName() + "[dataModel:" + getDataModel() + ",inferrer:" + inferrer + ']'; } }