org.codelibs.elasticsearch.taste.similarity.AveragingPreferenceInferrer Maven / Gradle / Ivy
/**
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.codelibs.elasticsearch.taste.similarity;
import java.util.Collection;
import org.codelibs.elasticsearch.taste.common.Cache;
import org.codelibs.elasticsearch.taste.common.FullRunningAverage;
import org.codelibs.elasticsearch.taste.common.Refreshable;
import org.codelibs.elasticsearch.taste.common.Retriever;
import org.codelibs.elasticsearch.taste.common.RunningAverage;
import org.codelibs.elasticsearch.taste.model.DataModel;
import org.codelibs.elasticsearch.taste.model.PreferenceArray;
/**
*
* Implementations of this interface compute an inferred preference for a user and an item that the user has
* not expressed any preference for. This might be an average of other preferences scores from that user, for
* example. This technique is sometimes called "default voting".
*
*/
public final class AveragingPreferenceInferrer implements PreferenceInferrer {
private static final Float ZERO = 0.0f;
private final DataModel dataModel;
private final Cache averagePreferenceValue;
public AveragingPreferenceInferrer(final DataModel dataModel) {
this.dataModel = dataModel;
final Retriever retriever = new PrefRetriever();
averagePreferenceValue = new Cache(retriever,
dataModel.getNumUsers());
refresh(null);
}
@Override
public float inferPreference(final long userID, final long itemID) {
return averagePreferenceValue.get(userID);
}
@Override
public void refresh(final Collection alreadyRefreshed) {
averagePreferenceValue.clear();
}
private final class PrefRetriever implements Retriever {
@Override
public Float get(final Long key) {
final PreferenceArray prefs = dataModel.getPreferencesFromUser(key);
final int size = prefs.length();
if (size == 0) {
return ZERO;
}
final RunningAverage average = new FullRunningAverage();
for (int i = 0; i < size; i++) {
average.addDatum(prefs.getValue(i));
}
return (float) average.getAverage();
}
}
@Override
public String toString() {
return "AveragingPreferenceInferrer";
}
}