All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.codelibs.elasticsearch.taste.similarity.AveragingPreferenceInferrer Maven / Gradle / Ivy

/**
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.codelibs.elasticsearch.taste.similarity;

import java.util.Collection;

import org.codelibs.elasticsearch.taste.common.Cache;
import org.codelibs.elasticsearch.taste.common.FullRunningAverage;
import org.codelibs.elasticsearch.taste.common.Refreshable;
import org.codelibs.elasticsearch.taste.common.Retriever;
import org.codelibs.elasticsearch.taste.common.RunningAverage;
import org.codelibs.elasticsearch.taste.model.DataModel;
import org.codelibs.elasticsearch.taste.model.PreferenceArray;

/**
 * 

* Implementations of this interface compute an inferred preference for a user and an item that the user has * not expressed any preference for. This might be an average of other preferences scores from that user, for * example. This technique is sometimes called "default voting". *

*/ public final class AveragingPreferenceInferrer implements PreferenceInferrer { private static final Float ZERO = 0.0f; private final DataModel dataModel; private final Cache averagePreferenceValue; public AveragingPreferenceInferrer(final DataModel dataModel) { this.dataModel = dataModel; final Retriever retriever = new PrefRetriever(); averagePreferenceValue = new Cache(retriever, dataModel.getNumUsers()); refresh(null); } @Override public float inferPreference(final long userID, final long itemID) { return averagePreferenceValue.get(userID); } @Override public void refresh(final Collection alreadyRefreshed) { averagePreferenceValue.clear(); } private final class PrefRetriever implements Retriever { @Override public Float get(final Long key) { final PreferenceArray prefs = dataModel.getPreferencesFromUser(key); final int size = prefs.length(); if (size == 0) { return ZERO; } final RunningAverage average = new FullRunningAverage(); for (int i = 0; i < size; i++) { average.addDatum(prefs.getValue(i)); } return (float) average.getAverage(); } } @Override public String toString() { return "AveragingPreferenceInferrer"; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy