All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.codelibs.elasticsearch.taste.similarity.TanimotoCoefficientSimilarity Maven / Gradle / Ivy

/**
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.codelibs.elasticsearch.taste.similarity;

import java.util.Collection;

import org.codelibs.elasticsearch.taste.common.FastIDSet;
import org.codelibs.elasticsearch.taste.common.RefreshHelper;
import org.codelibs.elasticsearch.taste.common.Refreshable;
import org.codelibs.elasticsearch.taste.model.DataModel;

/**
 * 

* An implementation of a "similarity" based on the * Tanimoto coefficient, or extended Jaccard * coefficient. *

* *

* This is intended for "binary" data sets where a user either expresses a generic "yes" preference for an * item or has no preference. The actual preference values do not matter here, only their presence or absence. *

* *

* The value returned is in [0,1]. *

*/ public final class TanimotoCoefficientSimilarity extends AbstractItemSimilarity implements UserSimilarity { public TanimotoCoefficientSimilarity(final DataModel dataModel) { super(dataModel); } /** * @throws UnsupportedOperationException */ @Override public void setPreferenceInferrer(final PreferenceInferrer inferrer) { throw new UnsupportedOperationException(); } @Override public double userSimilarity(final long userID1, final long userID2) { final DataModel dataModel = getDataModel(); final FastIDSet xPrefs = dataModel.getItemIDsFromUser(userID1); final FastIDSet yPrefs = dataModel.getItemIDsFromUser(userID2); final int xPrefsSize = xPrefs.size(); final int yPrefsSize = yPrefs.size(); if (xPrefsSize == 0 && yPrefsSize == 0) { return Double.NaN; } if (xPrefsSize == 0 || yPrefsSize == 0) { return 0.0; } final int intersectionSize = xPrefsSize < yPrefsSize ? yPrefs .intersectionSize(xPrefs) : xPrefs.intersectionSize(yPrefs); if (intersectionSize == 0) { return Double.NaN; } final int unionSize = xPrefsSize + yPrefsSize - intersectionSize; return (double) intersectionSize / (double) unionSize; } @Override public double itemSimilarity(final long itemID1, final long itemID2) { final int preferring1 = getDataModel().getNumUsersWithPreferenceFor( itemID1); return doItemSimilarity(itemID1, itemID2, preferring1); } @Override public double[] itemSimilarities(final long itemID1, final long[] itemID2s) { final int preferring1 = getDataModel().getNumUsersWithPreferenceFor( itemID1); final int length = itemID2s.length; final double[] result = new double[length]; for (int i = 0; i < length; i++) { result[i] = doItemSimilarity(itemID1, itemID2s[i], preferring1); } return result; } private double doItemSimilarity(final long itemID1, final long itemID2, final int preferring1) { final DataModel dataModel = getDataModel(); final int preferring1and2 = dataModel.getNumUsersWithPreferenceFor( itemID1, itemID2); if (preferring1and2 == 0) { return Double.NaN; } final int preferring2 = dataModel.getNumUsersWithPreferenceFor(itemID2); return (double) preferring1and2 / (double) (preferring1 + preferring2 - preferring1and2); } @Override public void refresh(Collection alreadyRefreshed) { alreadyRefreshed = RefreshHelper.buildRefreshed(alreadyRefreshed); RefreshHelper.maybeRefresh(alreadyRefreshed, getDataModel()); } @Override public String toString() { return "TanimotoCoefficientSimilarity[dataModel:" + getDataModel() + ']'; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy