net.sf.saxon.expr.SlashExpression Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of saxon-he Show documentation
Show all versions of saxon-he Show documentation
An OSGi bundle for Saxon-HE
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Copyright (c) 2013 Saxonica Limited.
// This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0.
// If a copy of the MPL was not distributed with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// This Source Code Form is "Incompatible With Secondary Licenses", as defined by the Mozilla Public License, v. 2.0.
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
package net.sf.saxon.expr;
import net.sf.saxon.Configuration;
import net.sf.saxon.expr.instruct.CopyOf;
import net.sf.saxon.expr.instruct.ForEach;
import net.sf.saxon.expr.parser.*;
import net.sf.saxon.expr.sort.DocumentSorter;
import net.sf.saxon.functions.Reverse;
import net.sf.saxon.om.AxisInfo;
import net.sf.saxon.om.Item;
import net.sf.saxon.om.SequenceIterator;
import net.sf.saxon.pattern.*;
import net.sf.saxon.trace.ExpressionPresenter;
import net.sf.saxon.trans.XPathException;
import net.sf.saxon.type.ErrorType;
import net.sf.saxon.type.ItemType;
import net.sf.saxon.type.Type;
import net.sf.saxon.type.TypeHierarchy;
import net.sf.saxon.value.Cardinality;
import net.sf.saxon.value.IntegerValue;
import net.sf.saxon.value.SequenceType;
import java.util.Iterator;
import java.util.List;
import java.util.Stack;
/**
* A slash expression is any expression using the binary slash operator "/". The parser initially generates a slash
* expression for all occurrences of the binary "/" operator. Subsequently, as a result of type inferencing, the
* majority of slash expressions will be rewritten as instances of PathExpression (returning nodes) or
* ForEach instructions (when they return atomic values). However, in the rare case where it is not possible to determine
* statically whether the rh operand returns nodes or atomic values, instances of this class may need to be interpreted
* directly at run time.
*/
public class SlashExpression extends Expression
implements ContextSwitchingExpression, ContextMappingFunction- {
Expression start;
Expression step;
/**
* Constructor
*
* @param start The left hand operand (which must always select a sequence of nodes).
* @param step The step to be followed from each node in the start expression to yield a new
* sequence; this may return either nodes or atomic values (but not a mixture of the two)
*/
public SlashExpression(Expression start, Expression step) {
this.start = start;
this.step = step;
adoptChildExpression(start);
adoptChildExpression(step);
}
public void setStartExpression(Expression start2) {
if (start != start2) {
start = start2;
adoptChildExpression(start);
}
}
public void setStepExpression(Expression step2) {
if (step != step2) {
step = step2;
adoptChildExpression(step);
}
}
/**
* Get the start expression (the left-hand operand)
*
* @return the first operand
*/
public Expression getControllingExpression() {
return start;
}
/**
* Get the step expression (the right-hand operand)
*
* @return the second operand
*/
public Expression getControlledExpression() {
return step;
}
/**
* Simplify an expression
*
* @param visitor the expression visitor
* @return the simplified expression
*/
/*@NotNull*/
public Expression simplify(ExpressionVisitor visitor) throws XPathException {
setStartExpression(visitor.simplify(start));
setStepExpression(visitor.simplify(step));
return this;
}
/**
* Determine the data type of the items returned by this exprssion
*
* @param th the type hierarchy cache
* @return the type of the step
*/
/*@NotNull*/
public final ItemType getItemType(TypeHierarchy th) {
return step.getItemType(th);
}
/**
* For an expression that returns an integer or a sequence of integers, get
* a lower and upper bound on the values of the integers that may be returned, from
* static analysis. The default implementation returns null, meaning "unknown" or
* "not applicable". Other implementations return an array of two IntegerValue objects,
* representing the lower and upper bounds respectively. The values
* UNBOUNDED_LOWER and UNBOUNDED_UPPER are used by convention to indicate that
* the value may be arbitrarily large. The values MAX_STRING_LENGTH and MAX_SEQUENCE_LENGTH
* are used to indicate values limited by the size of a string or the size of a sequence.
*
* @return the lower and upper bounds of integer values in the result, or null to indicate
* unknown or not applicable.
*/
@Override
public IntegerValue[] getIntegerBounds() {
return step.getIntegerBounds();
}
/**
* Type-check the expression
*/
/*@NotNull*/
public Expression typeCheck(ExpressionVisitor visitor, ExpressionVisitor.ContextItemType contextItemType) throws XPathException {
final TypeHierarchy th = visitor.getConfiguration().getTypeHierarchy();
Expression start2 = visitor.typeCheck(start, contextItemType);
// The first operand must be of type node()*
RoleLocator role0 = new RoleLocator(RoleLocator.BINARY_EXPR, "/", 0);
role0.setErrorCode("XPTY0019");
setStartExpression(
TypeChecker.staticTypeCheck(start2, SequenceType.NODE_SEQUENCE, false, role0, visitor));
// Now check the second operand
setStepExpression(visitor.typeCheck(step, new ExpressionVisitor.ContextItemType(start.getItemType(th), false)));
// If the expression has the form (a//descendant-or-self::node())/b, try to simplify it to
// use the descendant axis
Expression e2 = simplifyDescendantPath(visitor.getStaticContext());
if (e2 != null) {
return e2.typeCheck(visitor, contextItemType);
}
if (start instanceof ContextItemExpression &&
((step.getSpecialProperties() & StaticProperty.ORDERED_NODESET) != 0)) {
return step;
}
if (step instanceof ContextItemExpression &&
((start.getSpecialProperties() & StaticProperty.ORDERED_NODESET) != 0)) {
return start;
}
return this;
}
// Simplify an expression of the form a//b, where b has no positional filters.
// This comes out of the constructor above as (a/descendent-or-self::node())/child::b,
// but it is equivalent to a/descendant::b; and the latter is better as it
// doesn't require sorting. Note that we can't do this until type information is available,
// as we need to know whether any filters are positional or not.
private SlashExpression simplifyDescendantPath(StaticContext env) {
Expression st = start;
// detect .//x as a special case; this will appear as descendant-or-self::node()/x
if (start instanceof AxisExpression) {
AxisExpression stax = (AxisExpression) start;
if (stax.getAxis() != AxisInfo.DESCENDANT_OR_SELF) {
return null;
}
ContextItemExpression cie = new ContextItemExpression();
ExpressionTool.copyLocationInfo(this, cie);
st = ExpressionTool.makePathExpression(cie, stax, false);
ExpressionTool.copyLocationInfo(this, st);
}
if (!(st instanceof SlashExpression)) {
return null;
}
SlashExpression startPath = (SlashExpression) st;
if (!(startPath.step instanceof AxisExpression)) {
return null;
}
AxisExpression mid = (AxisExpression) startPath.step;
if (mid.getAxis() != AxisInfo.DESCENDANT_OR_SELF) {
return null;
}
NodeTest test = mid.getNodeTest();
if (!(test == null || test instanceof AnyNodeTest)) {
return null;
}
Expression underlyingStep = step;
while (underlyingStep instanceof FilterExpression) {
if (((FilterExpression) underlyingStep).isPositional(env.getConfiguration().getTypeHierarchy())) {
return null;
}
underlyingStep = ((FilterExpression) underlyingStep).getControllingExpression();
}
if (!(underlyingStep instanceof AxisExpression)) {
return null;
}
byte underlyingAxis = ((AxisExpression) underlyingStep).getAxis();
if (underlyingAxis == AxisInfo.CHILD ||
underlyingAxis == AxisInfo.DESCENDANT ||
underlyingAxis == AxisInfo.DESCENDANT_OR_SELF) {
byte newAxis = (underlyingAxis == AxisInfo.DESCENDANT_OR_SELF ? AxisInfo.DESCENDANT_OR_SELF : AxisInfo.DESCENDANT);
Expression newStep =
new AxisExpression(newAxis,
((AxisExpression) underlyingStep).getNodeTest());
ExpressionTool.copyLocationInfo(this, newStep);
underlyingStep = step;
// Add any filters to the new expression. We know they aren't
// positional, so the order of the filters doesn't technically matter
// (XPath section 2.3.4 explicitly allows us to change it.)
// However, in the interests of predictable execution, hand-optimization, and
// diagnosable error behaviour, we retain the original order.
Stack
filters = new Stack();
while (underlyingStep instanceof FilterExpression) {
filters.add(((FilterExpression) underlyingStep).getFilter());
underlyingStep = ((FilterExpression) underlyingStep).getControllingExpression();
}
while (!filters.isEmpty()) {
newStep = new FilterExpression(newStep, filters.pop());
ExpressionTool.copyLocationInfo(step, newStep);
}
//System.err.println("Simplified this:");
// display(10);
//System.err.println("as this:");
// new PathExpression(startPath.start, newStep).display(10);
Expression newPath = ExpressionTool.makePathExpression(startPath.start, newStep, false);
if (!(newPath instanceof SlashExpression)) {
return null;
}
ExpressionTool.copyLocationInfo(this, newPath);
return (SlashExpression) newPath;
}
if (underlyingAxis == AxisInfo.ATTRIBUTE) {
// turn the expression a//@b into a/descendant-or-self::*/@b
Expression newStep =
new AxisExpression(AxisInfo.DESCENDANT_OR_SELF, NodeKindTest.ELEMENT);
ExpressionTool.copyLocationInfo(this, newStep);
Expression e2 = ExpressionTool.makePathExpression(startPath.start, newStep, false);
Expression e3 = ExpressionTool.makePathExpression(e2, step, false);
if (!(e3 instanceof SlashExpression)) {
return null;
}
ExpressionTool.copyLocationInfo(this, e3);
return (SlashExpression) e3;
}
return null;
}
/*@NotNull*/
public Expression optimize(ExpressionVisitor visitor, ExpressionVisitor.ContextItemType contextItemType) throws XPathException {
TypeHierarchy th = visitor.getConfiguration().getTypeHierarchy();
Optimizer opt = visitor.getConfiguration().obtainOptimizer();
setStartExpression(visitor.optimize(start, contextItemType));
setStepExpression(step.optimize(visitor, new ExpressionVisitor.ContextItemType(start.getItemType(th), false)));
if (Literal.isEmptySequence(start) || Literal.isEmptySequence(step)) {
return Literal.makeEmptySequence();
}
if (start instanceof RootExpression && th.isSubType(contextItemType.itemType, NodeKindTest.DOCUMENT)) {
// remove unnecessary leading "/" - helps streaming
return step;
}
// Rewrite a/b[filter] as (a/b)[filter] to improve the chance of indexing
Expression lastStep = getLastStep();
if (lastStep instanceof FilterExpression && !((FilterExpression) lastStep).isPositional(th)) {
Expression leading = getLeadingSteps();
Expression p2 = ExpressionTool.makePathExpression(leading, ((FilterExpression) lastStep).getControllingExpression(), false);
Expression f2 = new FilterExpression(p2, ((FilterExpression) lastStep).getFilter());
return f2.optimize(visitor, contextItemType);
}
if (!visitor.isOptimizeForStreaming()) {
Expression k = opt.convertPathExpressionToKey(this, visitor);
if (k != null) {
return k.typeCheck(visitor, contextItemType).optimize(visitor, contextItemType);
}
}
// Replace //x/y by descendant::y[parent::x] to eliminate the need for sorting
// into document order, and to make the expression streamable
if (start instanceof AxisExpression && ((AxisExpression)start).getAxis() == AxisInfo.DESCENDANT &&
step instanceof AxisExpression && ((AxisExpression)step).getAxis() == AxisInfo.CHILD) {
// TODO: we could be more ambitious and attempt this in the presence of non-positional filters;
Expression k = new FilterExpression(
new AxisExpression(AxisInfo.DESCENDANT, ((AxisExpression)step).getNodeTest()),
new AxisExpression(AxisInfo.PARENT, ((AxisExpression)start).getNodeTest()));
// If we're not starting at the root, ensure we go down at least one level
if (!th.isSubType(contextItemType.itemType, NodeKindTest.DOCUMENT)) {
k = new SlashExpression(new AxisExpression(AxisInfo.CHILD, NodeKindTest.ELEMENT), k);
}
opt.trace("Rewrote descendant::X/child::Y as descendant::Y[parent::X]", k);
return k;
}
// Replace $x/child::abcd by a SimpleStepExpression, to avoid the need for creating
// a new dynamic context at run-time.
if (step instanceof AxisExpression && !Cardinality.allowsMany(start.getCardinality())) {
SimpleStepExpression sse = new SimpleStepExpression(start, step);
ExpressionTool.copyLocationInfo(this, sse);
return sse;
}
Expression k = promoteFocusIndependentSubexpressions(visitor, contextItemType);
if (k != this) {
return k;
}
if (visitor.isOptimizeForStreaming()) {
// rewrite a/copy-of(.) as copy-of(a)
Expression rawStep = ExpressionTool.unfilteredExpression(step);
if (rawStep instanceof CopyOf && ((CopyOf)rawStep).getSelectExpression() instanceof ContextItemExpression) {
((CopyOf)rawStep).setSelectExpression(start);
rawStep.resetLocalStaticProperties();
step.resetLocalStaticProperties();
return step;
}
}
return this;
}
/**
* Test whether a path expression is an absolute path - that is, a path whose first step selects a
* document node; if not, see if it can be converted to an absolute path. This is possible in cases where
* the path expression has the form a/b/c and it is known that the context item is a document node; in this
* case it is safe to change the path expression to /a/b/c
*
* @param th the type hierarchy cache
* @return the path expression if it is absolute; the converted path expression if it can be made absolute;
* or null if neither condition applies.
*/
public SlashExpression tryToMakeAbsolute(TypeHierarchy th) {
Expression first = getFirstStep();
if (first.getItemType(th).getPrimitiveType() == Type.DOCUMENT) {
return this;
}
if (first instanceof AxisExpression) {
// This second test allows keys to be built. See XMark q9.
ItemType contextItemType = ((AxisExpression) first).getContextItemType();
if (contextItemType != null && contextItemType.getPrimitiveType() == Type.DOCUMENT) {
RootExpression root = new RootExpression();
ExpressionTool.copyLocationInfo(this, root);
Expression path = ExpressionTool.makePathExpression(root, this, false);
ExpressionTool.copyLocationInfo(this, path);
return (SlashExpression) path;
}
}
if (first instanceof DocumentSorter && ((DocumentSorter) first).getBaseExpression() instanceof SlashExpression) {
// see test case filter-001 in xqts-extra
SlashExpression se = (SlashExpression) ((DocumentSorter) first).getBaseExpression();
SlashExpression se2 = se.tryToMakeAbsolute(th);
if (se2 != null) {
if (se2 == se) {
return this;
} else {
Expression rest = getRemainingSteps();
DocumentSorter ds = new DocumentSorter(se2);
return new SlashExpression(ds, rest);
}
}
}
return null;
}
/**
* If any subexpressions within the step are not dependent on the focus,
* and if they are not "creative" expressions (expressions that can create new nodes), then
* promote them: this causes them to be evaluated once, outside the path expression
*
* @param visitor the expression visitor
* @param contextItemType the type of the context item for evaluating the start expression
* @return the rewritten expression, or the original expression if no rewrite was possible
* @throws net.sf.saxon.trans.XPathException
* if a static error is detected
*/
protected Expression promoteFocusIndependentSubexpressions(
ExpressionVisitor visitor, ExpressionVisitor.ContextItemType contextItemType) throws XPathException {
Optimizer opt = visitor.getConfiguration().obtainOptimizer();
PromotionOffer offer = new PromotionOffer(opt);
offer.action = PromotionOffer.FOCUS_INDEPENDENT;
offer.promoteDocumentDependent = (start.getSpecialProperties() & StaticProperty.CONTEXT_DOCUMENT_NODESET) != 0;
offer.containingExpression = this;
setStepExpression(doPromotion(step, offer));
visitor.resetStaticProperties();
if (offer.containingExpression != this) {
offer.containingExpression =
visitor.optimize(visitor.typeCheck(offer.containingExpression, contextItemType), contextItemType);
return offer.containingExpression;
}
return this;
}
/**
* Promote this expression if possible
*/
public Expression promote(PromotionOffer offer, Expression parent) throws XPathException {
Expression exp = offer.accept(parent, this);
if (exp != null) {
return exp;
} else {
setStartExpression(doPromotion(start, offer));
if (offer.action == PromotionOffer.INLINE_VARIABLE_REFERENCES ||
offer.action == PromotionOffer.REPLACE_CURRENT) {
// Don't pass on other requests. We could pass them on, but only after augmenting
// them to say we are interested in subexpressions that don't depend on either the
// outer context or the inner context.
setStepExpression(doPromotion(step, offer));
}
return this;
}
}
/**
* Replace this expression by an expression that returns the same result but without
* regard to order
*
* @param retainAllNodes true if all nodes in the result must be retained; false
* if duplicates can be eliminated
*/
@Override
public Expression unordered(boolean retainAllNodes) throws XPathException {
start = start.unordered(retainAllNodes);
step = step.unordered(retainAllNodes);
return this;
}
/**
* Get the immediate subexpressions of this expression
*/
/*@NotNull*/
public Iterator iterateSubExpressions() {
return new PairIterator(start, step);
}
/**
* Get the immediate sub-expressions of this expression, with information about the relationship
* of each expression to its parent expression. Default implementation
* returns a zero-length array, appropriate for an expression that has no
* sub-expressions.
*
* @return an iterator containing the sub-expressions of this expression
*/
@Override
public Iterator iterateSubExpressionInfo() {
SubExpressionInfo selectInfo = new SubExpressionInfo(start, true, false, INSPECTION_CONTEXT);
SubExpressionInfo actionInfo = new SubExpressionInfo(step, false, true, INHERITED_CONTEXT);
return new PairIterator(selectInfo, actionInfo);
}
/**
* Replace one subexpression by a replacement subexpression
*
* @param original the original subexpression
* @param replacement the replacement subexpression
* @return true if the original subexpression is found
*/
public boolean replaceSubExpression(Expression original, Expression replacement) {
boolean found = false;
if (start == original) {
setStartExpression(replacement);
found = true;
}
if (step == original) {
setStepExpression(replacement);
found = true;
}
return found;
}
/**
* Add a representation of this expression to a PathMap. The PathMap captures a map of the nodes visited
* by an expression in a source tree.
*
* @param pathMap the PathMap to which the expression should be added
* @param pathMapNodeSet
* @return the pathMapNode representing the focus established by this expression, in the case where this
* expression is the first operand of a path expression or filter expression
*/
public PathMap.PathMapNodeSet addToPathMap(PathMap pathMap, PathMap.PathMapNodeSet pathMapNodeSet) {
PathMap.PathMapNodeSet target = start.addToPathMap(pathMap, pathMapNodeSet);
return step.addToPathMap(pathMap, target);
}
/**
* Determine which aspects of the context the expression depends on. The result is
* a bitwise-or'ed value composed from constants such as XPathContext.VARIABLES and
* XPathContext.CURRENT_NODE
*/
public int computeDependencies() {
return start.getDependencies() |
// not all dependencies in the step matter, because the context node, etc,
// are not those of the outer expression
(step.getDependencies() &
(StaticProperty.DEPENDS_ON_XSLT_CONTEXT |
StaticProperty.DEPENDS_ON_LOCAL_VARIABLES |
StaticProperty.DEPENDS_ON_USER_FUNCTIONS));
}
/**
* Copy an expression. This makes a deep copy.
*
* @return the copy of the original expression
*/
/*@NotNull*/
public Expression copy() {
return ExpressionTool.makePathExpression(start.copy(), step.copy(), false);
}
/**
* Get the static properties of this expression (other than its type). The result is
* bit-signficant. These properties are used for optimizations. In general, if
* property bit is set, it is true, but if it is unset, the value is unknown.
*/
public int computeSpecialProperties() {
int startProperties = start.getSpecialProperties();
int stepProperties = step.getSpecialProperties();
int p = 0;
if (!Cardinality.allowsMany(start.getCardinality())) {
startProperties |= StaticProperty.ORDERED_NODESET |
StaticProperty.PEER_NODESET |
StaticProperty.SINGLE_DOCUMENT_NODESET;
}
if (!Cardinality.allowsMany(step.getCardinality())) {
stepProperties |= StaticProperty.ORDERED_NODESET |
StaticProperty.PEER_NODESET |
StaticProperty.SINGLE_DOCUMENT_NODESET;
}
if ((startProperties & stepProperties & StaticProperty.CONTEXT_DOCUMENT_NODESET) != 0) {
p |= StaticProperty.CONTEXT_DOCUMENT_NODESET;
}
if (((startProperties & StaticProperty.SINGLE_DOCUMENT_NODESET) != 0) &&
((stepProperties & StaticProperty.CONTEXT_DOCUMENT_NODESET) != 0)) {
p |= StaticProperty.SINGLE_DOCUMENT_NODESET;
}
if ((startProperties & stepProperties & StaticProperty.PEER_NODESET) != 0) {
p |= StaticProperty.PEER_NODESET;
}
if ((startProperties & stepProperties & StaticProperty.SUBTREE_NODESET) != 0) {
p |= StaticProperty.SUBTREE_NODESET;
}
if (testNaturallySorted(startProperties, stepProperties)) {
p |= StaticProperty.ORDERED_NODESET;
}
if (testNaturallyReverseSorted()) {
p |= StaticProperty.REVERSE_DOCUMENT_ORDER;
}
if ((startProperties & stepProperties & StaticProperty.NON_CREATIVE) != 0) {
p |= StaticProperty.NON_CREATIVE;
}
return p;
}
/**
* Determine if we can guarantee that the nodes are delivered in document order.
* This is true if the start nodes are sorted peer nodes
* and the step is based on an Axis within the subtree rooted at each node.
* It is also true if the start is a singleton node and the axis is sorted.
*
* @param startProperties the properties of the left-hand expression
* @param stepProperties the properties of the right-hand expression
* @return true if the natural nested-loop evaluation strategy for the expression
* is known to deliver results with no duplicates and in document order, that is,
* if no additional sort is required
*/
private boolean testNaturallySorted(int startProperties, int stepProperties) {
// System.err.println("**** Testing pathExpression.isNaturallySorted()");
// display(20);
// System.err.println("Start is ordered node-set? " + start.isOrderedNodeSet());
// System.err.println("Start is naturally sorted? " + start.isNaturallySorted());
// System.err.println("Start is singleton? " + start.isSingleton());
if ((stepProperties & StaticProperty.ORDERED_NODESET) == 0) {
return false;
}
if (Cardinality.allowsMany(start.getCardinality())) {
if ((startProperties & StaticProperty.ORDERED_NODESET) == 0) {
return false;
}
} else {
//if ((stepProperties & StaticProperty.ORDERED_NODESET) != 0) {
return true;
//}
}
// We know now that both the start and the step are sorted. But this does
// not necessarily mean that the combination is sorted.
// The result is sorted if the start is sorted and the step selects attributes
// or namespaces
if ((stepProperties & StaticProperty.ATTRIBUTE_NS_NODESET) != 0) {
return true;
}
// The result is sorted if the step is creative (e.g. a call to copy-of())
if ((stepProperties & StaticProperty.NON_CREATIVE) == 0) {
return true;
}
// The result is sorted if the start selects "peer nodes" (that is, a node-set in which
// no node is an ancestor of another) and the step selects within the subtree rooted
// at the context node
return ((startProperties & StaticProperty.PEER_NODESET) != 0) &&
((stepProperties & StaticProperty.SUBTREE_NODESET) != 0);
}
/**
* Determine if the path expression naturally returns nodes in reverse document order
*
* @return true if the natural nested-loop evaluation strategy returns nodes in reverse
* document order
*/
private boolean testNaturallyReverseSorted() {
// Some examples of path expressions that are naturally reverse sorted:
// ancestor::*/@x
// ../preceding-sibling::x
// $x[1]/preceding-sibling::node()
// This information is used to do a simple reversal of the nodes
// instead of a full sort, which is significantly cheaper, especially
// when using tree models (such as DOM and JDOM) in which comparing
// nodes in document order is an expensive operation.
if (!Cardinality.allowsMany(start.getCardinality()) &&
(step instanceof AxisExpression)) {
return !AxisInfo.isForwards[((AxisExpression) step).getAxis()];
}
return !Cardinality.allowsMany(step.getCardinality()) &&
(start instanceof AxisExpression) &&
!AxisInfo.isForwards[((AxisExpression) start).getAxis()];
}
/**
* Determine the static cardinality of the expression
*/
public int computeCardinality() {
int c1 = start.getCardinality();
int c2 = step.getCardinality();
return Cardinality.multiply(c1, c2);
}
/**
* Convert this expression to an equivalent XSLT pattern
*
* @param config the Saxon configuration
* @param is30 true if this is XSLT 3.0
* @return the equivalent pattern
* @throws net.sf.saxon.trans.XPathException
* if conversion is not possible
*/
@Override
public Pattern toPattern(Configuration config, boolean is30) throws XPathException {
Expression head = getLeadingSteps();
Expression tail = getLastStep();
if (head instanceof ItemChecker) {
// No need to typecheck the context item
ItemChecker checker = (ItemChecker) head;
if (checker.getBaseExpression() instanceof ContextItemExpression) {
return tail.toPattern(config, is30);
}
}
Pattern tailPattern = tail.toPattern(config, is30);
if (tailPattern instanceof ItemTypePattern) {
if (tailPattern.getItemType() instanceof ErrorType) {
return tailPattern;
}
}
byte axis = AxisInfo.PARENT;
Pattern headPattern = null;
if (head instanceof SlashExpression) {
SlashExpression start = (SlashExpression) head;
if (start.getControlledExpression() instanceof AxisExpression) {
AxisExpression mid = (AxisExpression) start.getControlledExpression();
if (mid.getAxis() == AxisInfo.DESCENDANT_OR_SELF &&
(mid.getNodeTest() == null || mid.getNodeTest() instanceof AnyNodeTest)) {
axis = AxisInfo.ANCESTOR;
headPattern = start.getControllingExpression().toPattern(config, is30);
}
}
}
if (headPattern == null) {
axis = PatternMaker.getAxisForPathStep(tail);
headPattern = head.toPattern(config, is30);
}
return new AncestorQualifiedPattern(tailPattern, headPattern, axis);
}
/**
* Is this expression the same as another expression?
*/
public boolean equals(Object other) {
if (!(other instanceof SlashExpression)) {
return false;
}
SlashExpression p = (SlashExpression) other;
return (start.equals(p.start) && step.equals(p.step));
}
/**
* get HashCode for comparing two expressions
*/
public int hashCode() {
return "SlashExpression".hashCode() + start.hashCode() + step.hashCode();
}
/**
* Iterate the path-expression in a given context
*
* @param context the evaluation context
*/
/*@NotNull*/
public SequenceIterator extends Item> iterate(final XPathContext context) throws XPathException {
// This class delivers the result of the path expression in unsorted order,
// without removal of duplicates. If sorting and deduplication are needed,
// this is achieved by wrapping the path expression in a DocumentSorter
SequenceIterator result = start.iterate(context);
XPathContext context2 = context.newMinorContext();
context2.setCurrentIterator(result);
return new ContextMappingIterator- (this, context2);
}
/**
* Mapping function, from a node returned by the start iteration, to a sequence
* returned by the child.
*/
public SequenceIterator map(XPathContext context) throws XPathException {
return step.iterate(context);
}
/**
* Diagnostic print of expression structure. The abstract expression tree
* is written to the supplied output destination.
*/
public void explain(ExpressionPresenter destination) {
destination.startElement("slash");
if (this instanceof SimpleStepExpression) {
destination.emitAttribute("simple-step", "true");
}
start.explain(destination);
step.explain(destination);
destination.endElement();
}
/**
* The toString() method for an expression attempts to give a representation of the expression
* in an XPath-like form, but there is no guarantee that the syntax will actually be true XPath.
* In the case of XSLT instructions, the toString() method gives an abstracted view of the syntax
*
* @return a representation of the expression as a string
*/
public String toString() {
return ExpressionTool.parenthesize(start) + "/" + ExpressionTool.parenthesize(step);
}
/**
* Get the first step in this expression. A path expression A/B/C is represented as (A/B)/C, but
* the first step is A
*
* @return the first step in the expression, after expanding any nested path expressions
*/
public Expression getFirstStep() {
if (start instanceof SlashExpression) {
return ((SlashExpression) start).getFirstStep();
} else {
return start;
}
}
/**
* Get step of the path expression
*
* @return the step expression
*/
public Expression getStep() {
return step;
}
/**
* Get all steps after the first.
* This is complicated by the fact that A/B/C is represented as ((A/B)/C; we are required
* to return B/C
*
* @return a path expression containing all steps in this path expression other than the first,
* after expanding any nested path expressions
*/
public Expression getRemainingSteps() {
if (start instanceof SlashExpression) {
SlashExpression rem =
new SlashExpression(((SlashExpression) start).getRemainingSteps(), step);
ExpressionTool.copyLocationInfo(start, rem);
return rem;
} else {
return step;
}
}
/**
* Get the last step of the path expression
*
* @return the last step in the expression, after expanding any nested path expressions
*/
public Expression getLastStep() {
if (step instanceof SlashExpression) {
return ((SlashExpression) step).getLastStep();
} else {
return step;
}
}
/**
* Get a path expression consisting of all steps except the last
*
* @return a path expression containing all steps in this path expression other than the last,
* after expanding any nested path expressions
*/
public Expression getLeadingSteps() {
if (step instanceof SlashExpression) {
SlashExpression rem =
new SlashExpression(start, ((SlashExpression) step).getLeadingSteps());
ExpressionTool.copyLocationInfo(start, rem);
return rem;
} else {
return start;
}
}
/**
* Test whether a path expression is an absolute path - that is, a path whose first step selects a
* document node
*
* @param th the type hierarchy cache
* @return true if the first step in this path expression selects a document node
*/
public boolean isAbsolute(TypeHierarchy th) {
Expression first = getFirstStep();
if (first.getItemType(th).getPrimitiveType() == Type.DOCUMENT) {
return true;
}
// This second test allows keys to be built. See XMark q9.
// if (first instanceof AxisExpression && ((AxisExpression)first).getContextItemType().getPrimitiveType() == Type.DOCUMENT) {
// return true;
// };
return false;
}
}