Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*-
*
* * Copyright 2016 Skymind,Inc.
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*
*/
package org.deeplearning4j.arbiter.saver.local;
import lombok.AllArgsConstructor;
import lombok.EqualsAndHashCode;
import lombok.NoArgsConstructor;
import lombok.NonNull;
import lombok.extern.slf4j.Slf4j;
import org.apache.commons.io.FileUtils;
import org.apache.commons.io.FilenameUtils;
import org.deeplearning4j.arbiter.DL4JConfiguration;
import org.deeplearning4j.arbiter.GraphConfiguration;
import org.deeplearning4j.arbiter.optimize.api.OptimizationResult;
import org.deeplearning4j.arbiter.optimize.api.saving.ResultReference;
import org.deeplearning4j.arbiter.optimize.api.saving.ResultSaver;
import org.deeplearning4j.earlystopping.EarlyStoppingConfiguration;
import org.deeplearning4j.nn.api.Model;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.util.ModelSerializer;
import org.nd4j.shade.jackson.annotation.JsonCreator;
import org.nd4j.shade.jackson.annotation.JsonProperty;
import java.io.*;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
/**
* Basic MultiLayerNetwork saver. Saves config, parameters and score to: baseDir/0/, baseDir/1/, etc
* where index is given by OptimizationResult.getIndex()
*
* @author Alex Black
*/
@Slf4j
@NoArgsConstructor
@AllArgsConstructor
@EqualsAndHashCode
public class FileModelSaver implements ResultSaver {
@JsonProperty
private String path;
private File fPath;
@JsonCreator
public FileModelSaver(@NonNull String path) {
this(new File(path));
}
public FileModelSaver(@NonNull File file){
this.path = file.getPath();
this.fPath = file;
if(!fPath.exists()){
fPath.mkdirs();
} else if (!fPath.isDirectory()) {
throw new IllegalArgumentException("Invalid path: exists and is not directory. " + path);
}
log.info("FileModelSaver saving networks to local directory: {}", path);
}
@Override
public ResultReference saveModel(OptimizationResult result, Object modelResult) throws IOException {
String dir = new File(path, result.getIndex() + "/").getAbsolutePath();
File f = new File(dir);
f.mkdir();
File modelFile = new File(FilenameUtils.concat(dir, "model.bin"));
File scoreFile = new File(FilenameUtils.concat(dir, "score.txt"));
File additionalResultsFile = new File(FilenameUtils.concat(dir, "additionalResults.bin"));
File esConfigFile = new File(FilenameUtils.concat(dir, "earlyStoppingConfig.bin"));
File numEpochsFile = new File(FilenameUtils.concat(dir, "numEpochs.txt"));
FileUtils.writeStringToFile(scoreFile, String.valueOf(result.getScore()));
Model m = (Model) modelResult;
ModelSerializer.writeModel(m, modelFile, true);
Object additionalResults = result.getModelSpecificResults();
if (additionalResults != null && additionalResults instanceof Serializable) {
try (ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream(additionalResultsFile))) {
oos.writeObject(additionalResults);
}
}
//Write early stopping configuration (if present) to file:
int nEpochs;
EarlyStoppingConfiguration esc;
if (result.getCandidate().getValue() instanceof DL4JConfiguration) {
DL4JConfiguration c = ((DL4JConfiguration) result.getCandidate().getValue());
esc = c.getEarlyStoppingConfiguration();
nEpochs = c.getNumEpochs();
} else {
GraphConfiguration c = ((GraphConfiguration) result.getCandidate().getValue());
esc = c.getEarlyStoppingConfiguration();
nEpochs = c.getNumEpochs();
}
if (esc != null) {
try (ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream(esConfigFile))) {
oos.writeObject(esc);
}
} else {
FileUtils.writeStringToFile(numEpochsFile, String.valueOf(nEpochs));
}
log.debug("Deeplearning4j model result (id={}, score={}) saved to directory: {}", result.getIndex(),
result.getScore(), dir);
boolean isGraph = m instanceof ComputationGraph;
return new LocalFileNetResultReference(result.getIndex(), dir, isGraph, modelFile, scoreFile,
additionalResultsFile, esConfigFile, numEpochsFile, result.getCandidate());
}
@Override
public List> getSupportedCandidateTypes() {
return Collections.>singletonList(Object.class);
}
@Override
public List> getSupportedModelTypes() {
return Arrays.>asList(MultiLayerNetwork.class, ComputationGraph.class);
}
@Override
public String toString() {
return "FileModelSaver(path=" + path + ")";
}
}