All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.arbiter.layers.LocalResponseNormalizationLayerSpace Maven / Gradle / Ivy

There is a newer version: 1.0.0-beta7
Show newest version
/*******************************************************************************
 * Copyright (c) 2015-2018 Skymind, Inc.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Apache License, Version 2.0 which is available at
 * https://www.apache.org/licenses/LICENSE-2.0.
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 *
 * SPDX-License-Identifier: Apache-2.0
 ******************************************************************************/

package org.deeplearning4j.arbiter.layers;

import lombok.AccessLevel;
import lombok.Data;
import lombok.EqualsAndHashCode;
import lombok.NoArgsConstructor;
import org.deeplearning4j.arbiter.optimize.api.ParameterSpace;
import org.deeplearning4j.arbiter.optimize.parameter.FixedValue;
import org.deeplearning4j.arbiter.util.LeafUtils;
import org.deeplearning4j.nn.conf.layers.LocalResponseNormalization;

@Data
@EqualsAndHashCode(callSuper = true)
@NoArgsConstructor(access = AccessLevel.PRIVATE) //For Jackson JSON/YAML deserialization
public class LocalResponseNormalizationLayerSpace extends LayerSpace {

    private ParameterSpace n;
    private ParameterSpace k;
    private ParameterSpace alpha;
    private ParameterSpace beta;


    private LocalResponseNormalizationLayerSpace(Builder builder) {
        super(builder);
        this.n = builder.n;
        this.k = builder.k;
        this.alpha = builder.alpha;
        this.beta = builder.beta;

        this.numParameters = LeafUtils.countUniqueParameters(collectLeaves());
    }

    @Override
    public LocalResponseNormalization getValue(double[] values) {
        LocalResponseNormalization.Builder b = new LocalResponseNormalization.Builder();
        setLayerOptionsBuilder(b, values);
        return b.build();
    }

    protected void setLayerOptionsBuilder(LocalResponseNormalization.Builder builder, double[] values) {
        super.setLayerOptionsBuilder(builder, values);
        if (n != null)
            builder.n(n.getValue(values));
        if (k != null)
            builder.k(k.getValue(values));
        if (alpha != null)
            builder.alpha(alpha.getValue(values));
        if (beta != null)
            builder.beta(beta.getValue(values));
    }


    public static class Builder extends LayerSpace.Builder {

        private ParameterSpace n;
        private ParameterSpace k;
        private ParameterSpace alpha;
        private ParameterSpace beta;


        public Builder n(double n) {
            return n(new FixedValue<>(n));
        }

        public Builder n(ParameterSpace n) {
            this.n = n;
            return this;
        }

        public Builder k(double k) {
            return k(new FixedValue<>(k));
        }

        public Builder k(ParameterSpace k) {
            this.k = k;
            return this;
        }

        public Builder alpha(double alpha) {
            return alpha(new FixedValue<>(alpha));
        }

        public Builder alpha(ParameterSpace alpha) {
            this.alpha = alpha;
            return this;
        }

        public Builder beta(double beta) {
            return beta(new FixedValue<>(beta));
        }

        public Builder beta(ParameterSpace beta) {
            this.beta = beta;
            return this;
        }

        public LocalResponseNormalizationLayerSpace build() {
            return new LocalResponseNormalizationLayerSpace(this);
        }

    }

}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy