All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.arbiter.layers.SubsamplingLayerSpace Maven / Gradle / Ivy

/*******************************************************************************
 * Copyright (c) 2015-2018 Skymind, Inc.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Apache License, Version 2.0 which is available at
 * https://www.apache.org/licenses/LICENSE-2.0.
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 *
 * SPDX-License-Identifier: Apache-2.0
 ******************************************************************************/

package org.deeplearning4j.arbiter.layers;

import lombok.AccessLevel;
import lombok.Data;
import lombok.EqualsAndHashCode;
import lombok.NoArgsConstructor;
import org.deeplearning4j.arbiter.optimize.api.ParameterSpace;
import org.deeplearning4j.arbiter.optimize.parameter.FixedValue;
import org.deeplearning4j.arbiter.util.LeafUtils;
import org.deeplearning4j.nn.conf.ConvolutionMode;
import org.deeplearning4j.nn.conf.layers.SubsamplingLayer;

/**
 * Layer hyperparameter configuration space for subsampling layers
 *
 * @author Alex Black
 */
@Data
@EqualsAndHashCode(callSuper = true)
@NoArgsConstructor(access = AccessLevel.PRIVATE) //For Jackson JSON/YAML deserialization
public class SubsamplingLayerSpace extends LayerSpace {

    protected ParameterSpace convolutionMode;
    protected ParameterSpace poolingType;
    protected ParameterSpace dilation;
    protected ParameterSpace kernelSize;
    protected ParameterSpace stride;
    protected ParameterSpace padding;
    protected ParameterSpace pnorm;
    protected ParameterSpace eps;

    private SubsamplingLayerSpace(Builder builder) {
        super(builder);
        this.convolutionMode = builder.convolutionMode;
        this.poolingType = builder.poolingType;
        this.kernelSize = builder.kernelSize;
        this.dilation = builder.dilation;
        this.stride = builder.stride;
        this.padding = builder.padding;
        this.pnorm = builder.pnorm;
        this.eps = builder.eps;

        this.numParameters = LeafUtils.countUniqueParameters(collectLeaves());
    }

    @Override
    public SubsamplingLayer getValue(double[] values) {
        SubsamplingLayer.Builder b = new SubsamplingLayer.Builder();
        setLayerOptionsBuilder(b, values);
        return b.build();
    }

    protected void setLayerOptionsBuilder(SubsamplingLayer.Builder builder, double[] values) {
        super.setLayerOptionsBuilder(builder, values);
        if (convolutionMode != null)
            builder.convolutionMode(convolutionMode.getValue(values));
        if (poolingType != null)
            builder.poolingType(poolingType.getValue(values));
        if (dilation !=null)
            builder.dilation(dilation.getValue(values));
        if (kernelSize != null)
            builder.kernelSize(kernelSize.getValue(values));
        if (stride != null)
            builder.stride(stride.getValue(values));
        if (padding != null)
            builder.padding(padding.getValue(values));
        if(pnorm != null)
            builder.pnorm(pnorm.getValue(values));
        if(eps != null)
            builder.eps(eps.getValue(values));
    }

    @Override
    public String toString() {
        return toString(", ");
    }

    @Override
    public String toString(String delim) {
        StringBuilder sb = new StringBuilder("SubsamplingLayerSpace(");
        if (convolutionMode != null)
            sb.append("convolutionMode: ").append(convolutionMode).append(delim);
        if (poolingType != null)
            sb.append("poolingType: ").append(poolingType).append(delim);
        if (dilation != null)
            sb.append("dilation: ").append(dilation).append(delim);
        if (kernelSize != null)
            sb.append("kernelSize: ").append(kernelSize).append(delim);
        if (stride != null)
            sb.append("stride: ").append(stride).append(delim);
        if (padding != null)
            sb.append("padding: ").append(padding).append(delim);
        if (pnorm != null)
            sb.append("pnorm: ").append(pnorm).append(delim);
        if (eps != null)
            sb.append("eps: ").append(eps).append(delim);
        sb.append(super.toString(delim)).append(")");
        return sb.toString();
    }


    public static class Builder extends FeedForwardLayerSpace.Builder {

        protected ParameterSpace convolutionMode;
        protected ParameterSpace poolingType;
        protected ParameterSpace dilation;
        protected ParameterSpace kernelSize;
        protected ParameterSpace stride;
        protected ParameterSpace padding;
        protected ParameterSpace pnorm;
        protected ParameterSpace eps;

        public Builder convolutionMode(ConvolutionMode convolutionMode){
            return convolutionMode(new FixedValue<>(convolutionMode));
        }

        public Builder convolutionMode(ParameterSpace convolutionMode){
            this.convolutionMode = convolutionMode;
            return this;
        }

        public Builder poolingType(SubsamplingLayer.PoolingType poolingType) {
            return poolingType(new FixedValue<>(poolingType));
        }

        public Builder poolingType(ParameterSpace poolingType) {
            this.poolingType = poolingType;
            return this;
        }

        public Builder dilation(int... dilation) {
            return dilation(new FixedValue<>(dilation));
        }

        public Builder dilation(ParameterSpace dilation) {
            this.dilation = dilation;
            return this;
        }

        public Builder kernelSize(int... kernelSize) {
            return kernelSize(new FixedValue<>(kernelSize));
        }

        public Builder kernelSize(ParameterSpace kernelSize) {
            this.kernelSize = kernelSize;
            return this;
        }

        public Builder stride(int... stride) {
            return stride(new FixedValue(stride));
        }

        public Builder stride(ParameterSpace stride) {
            this.stride = stride;
            return this;
        }

        public Builder padding(int... padding) {
            return padding(new FixedValue(padding));
        }

        public Builder padding(ParameterSpace padding) {
            this.padding = padding;
            return this;
        }

        public Builder pnorm(int pnorm){
            return pnorm(new FixedValue<>(pnorm));
        }

        public Builder pnorm(ParameterSpace pnorm){
            this.pnorm = pnorm;
            return this;
        }

        public Builder eps(double eps){
            return eps(new FixedValue<>(eps));
        }

        public Builder eps(ParameterSpace eps){
            this.eps = eps;
            return this;
        }

        @SuppressWarnings("unchecked")
        public SubsamplingLayerSpace build() {
            return new SubsamplingLayerSpace(this);
        }

    }

}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy