All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.text.movingwindow.WordConverter Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/*
 *
 *  * Copyright 2015 Skymind,Inc.
 *  *
 *  *    Licensed under the Apache License, Version 2.0 (the "License");
 *  *    you may not use this file except in compliance with the License.
 *  *    You may obtain a copy of the License at
 *  *
 *  *        http://www.apache.org/licenses/LICENSE-2.0
 *  *
 *  *    Unless required by applicable law or agreed to in writing, software
 *  *    distributed under the License is distributed on an "AS IS" BASIS,
 *  *    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  *    See the License for the specific language governing permissions and
 *  *    limitations under the License.
 *
 */

package org.deeplearning4j.text.movingwindow;

import org.deeplearning4j.models.word2vec.Word2Vec;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.util.FeatureUtil;

import java.util.ArrayList;
import java.util.List;


public class WordConverter {

	private List sentences = new ArrayList<>();
	private Word2Vec vec;
	private List windows;

	public WordConverter(List sentences,Word2Vec vec) {
		this.sentences = sentences;
		this.vec = vec;
	}

	public static INDArray toInputMatrix(List windows,Word2Vec vec) {
		int columns = vec.lookupTable().layerSize() * vec.getWindow();
		int rows = windows.size();
		INDArray ret = Nd4j.create(rows,columns);
		for(int i = 0; i < rows; i++) {
			ret.putRow(i, WindowConverter.asExampleMatrix(windows.get(i),vec));
		}
		return ret;
	}
	
	
	public INDArray toInputMatrix() {
		List windows = allWindowsForAllSentences();
		return toInputMatrix(windows,vec);
	}

	

	public static INDArray toLabelMatrix(List labels,List windows) {
		int columns = labels.size();
		INDArray ret = Nd4j.create(windows.size(),columns);
		for(int i = 0; i < ret.rows(); i++) {
			ret.putRow(i, FeatureUtil.toOutcomeVector(labels.indexOf(windows.get(i).getLabel()), labels.size()));
		}
		return ret;
	}
	
	public INDArray toLabelMatrix(List labels) {
		List windows = allWindowsForAllSentences();
		return toLabelMatrix(labels,windows);
	}

	private List allWindowsForAllSentences() {
		if(windows != null)
			return windows;
		windows = new ArrayList<>();
		for(String s : sentences)
			if(!s.isEmpty())
				windows.addAll(Windows.windows(s));
		return windows;
	}



}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy