org.deeplearning4j.models.glove.Glove Maven / Gradle / Ivy
package org.deeplearning4j.models.glove;
import lombok.NonNull;
import org.deeplearning4j.models.embeddings.WeightLookupTable;
import org.deeplearning4j.models.embeddings.learning.impl.elements.GloVe;
import org.deeplearning4j.models.embeddings.loader.VectorsConfiguration;
import org.deeplearning4j.models.embeddings.reader.ModelUtils;
import org.deeplearning4j.models.embeddings.wordvectors.WordVectors;
import org.deeplearning4j.models.sequencevectors.SequenceVectors;
import org.deeplearning4j.models.sequencevectors.interfaces.SequenceIterator;
import org.deeplearning4j.models.sequencevectors.interfaces.VectorsListener;
import org.deeplearning4j.models.sequencevectors.iterators.AbstractSequenceIterator;
import org.deeplearning4j.models.sequencevectors.transformers.impl.SentenceTransformer;
import org.deeplearning4j.models.word2vec.VocabWord;
import org.deeplearning4j.models.word2vec.wordstore.VocabCache;
import org.deeplearning4j.text.documentiterator.DocumentIterator;
import org.deeplearning4j.text.sentenceiterator.SentenceIterator;
import org.deeplearning4j.text.sentenceiterator.StreamLineIterator;
import org.deeplearning4j.text.tokenization.tokenizerfactory.TokenizerFactory;
import java.util.Collection;
import java.util.List;
/**
* GlobalVectors standalone implementation for DL4j.
* Based on original Stanford GloVe
* http://www-nlp.stanford.edu/pubs/glove.pdf
*
* @author [email protected]
*/
public class Glove extends SequenceVectors {
protected Glove() {
}
public static class Builder extends SequenceVectors.Builder {
private double xMax;
private boolean shuffle;
private boolean symmetric;
protected double alpha = 0.75d;
private int maxmemory = (int) (Runtime.getRuntime().totalMemory() / 1024 / 1024 / 1024);
protected TokenizerFactory tokenFactory;
protected SentenceIterator sentenceIterator;
protected DocumentIterator documentIterator;
public Builder() {
super();
}
public Builder(@NonNull VectorsConfiguration configuration) {
super(configuration);
}
/**
* This method has no effect for GloVe
*
* @param vec existing WordVectors model
* @return
*/
@Override
public Builder useExistingWordVectors(@NonNull WordVectors vec) {
return this;
}
@Override
public Builder iterate(@NonNull SequenceIterator iterator) {
super.iterate(iterator);
return this;
}
/**
* Specifies minibatch size for training process.
*
* @param batchSize
* @return
*/
@Override
public Builder batchSize(int batchSize) {
super.batchSize(batchSize);
return this;
}
/**
* Ierations and epochs are the same in GloVe implementation.
*
* @param iterations
* @return
*/
@Override
public Builder iterations(int iterations) {
super.epochs(iterations);
return this;
}
/**
* Sets the number of iteration over training corpus during training
*
* @param numEpochs
* @return
*/
@Override
public Builder epochs(int numEpochs) {
super.epochs(numEpochs);
return this;
}
@Override
public Builder useAdaGrad(boolean reallyUse) {
super.useAdaGrad(true);
return this;
}
@Override
public Builder layerSize(int layerSize) {
super.layerSize(layerSize);
return this;
}
@Override
public Builder learningRate(double learningRate) {
super.learningRate(learningRate);
return this;
}
/**
* Sets minimum word frequency during vocabulary mastering.
* Please note: this option is ignored, if vocabulary is built outside of GloVe
*
* @param minWordFrequency
* @return
*/
@Override
public Builder minWordFrequency(int minWordFrequency) {
super.minWordFrequency(minWordFrequency);
return this;
}
@Override
public Builder minLearningRate(double minLearningRate) {
super.minLearningRate(minLearningRate);
return this;
}
@Override
public Builder resetModel(boolean reallyReset) {
super.resetModel(reallyReset);
return this;
}
@Override
public Builder vocabCache(@NonNull VocabCache vocabCache) {
super.vocabCache(vocabCache);
return this;
}
@Override
public Builder lookupTable(@NonNull WeightLookupTable lookupTable) {
super.lookupTable(lookupTable);
return this;
}
@Override
@Deprecated
public Builder sampling(double sampling) {
super.sampling(sampling);
return this;
}
@Override
@Deprecated
public Builder negativeSample(double negative) {
super.negativeSample(negative);
return this;
}
@Override
public Builder stopWords(@NonNull List stopList) {
super.stopWords(stopList);
return this;
}
@Override
public Builder trainElementsRepresentation(boolean trainElements) {
super.trainElementsRepresentation(true);
return this;
}
@Override
@Deprecated
public Builder trainSequencesRepresentation(boolean trainSequences) {
super.trainSequencesRepresentation(false);
return this;
}
@Override
public Builder stopWords(@NonNull Collection stopList) {
super.stopWords(stopList);
return this;
}
@Override
public Builder windowSize(int windowSize) {
super.windowSize(windowSize);
return this;
}
@Override
public Builder seed(long randomSeed) {
super.seed(randomSeed);
return this;
}
@Override
public Builder workers(int numWorkers) {
super.workers(numWorkers);
return this;
}
/**
* Sets TokenizerFactory to be used for training
*
* @param tokenizerFactory
* @return
*/
public Builder tokenizerFactory(@NonNull TokenizerFactory tokenizerFactory) {
this.tokenFactory = tokenizerFactory;
return this;
}
/**
* Parameter specifying cutoff in weighting function; default 100.0
*
* @param xMax
* @return
*/
public Builder xMax(double xMax) {
this.xMax = xMax;
return this;
}
/**
* Parameters specifying, if cooccurrences list should be build into both directions from any current word.
*
* @param reallySymmetric
* @return
*/
public Builder symmetric(boolean reallySymmetric) {
this.symmetric = reallySymmetric;
return this;
}
/**
* Parameter specifying, if cooccurrences list should be shuffled between training epochs
*
* @param reallyShuffle
* @return
*/
public Builder shuffle(boolean reallyShuffle) {
this.shuffle = reallyShuffle;
return this;
}
/**
* This method has no effect for ParagraphVectors
*
* @param windows
* @return
*/
@Override
public Builder useVariableWindow(int... windows) {
// no-op
return this;
}
/**
* Parameter in exponent of weighting function; default 0.75
*
* @param alpha
* @return
*/
public Builder alpha(double alpha) {
this.alpha = alpha;
return this;
}
public Builder iterate(@NonNull SentenceIterator iterator) {
this.sentenceIterator = iterator;
return this;
}
public Builder iterate(@NonNull DocumentIterator iterator) {
this.sentenceIterator = new StreamLineIterator.Builder(iterator).setFetchSize(100).build();
return this;
}
/**
* Sets ModelUtils that gonna be used as provider for utility methods: similarity(), wordsNearest(), accuracy(), etc
*
* @param modelUtils model utils to be used
* @return
*/
@Override
public Builder modelUtils(@NonNull ModelUtils modelUtils) {
super.modelUtils(modelUtils);
return this;
}
/**
* This method sets VectorsListeners for this SequenceVectors model
*
* @param vectorsListeners
* @return
*/
@Override
public Builder setVectorsListeners(@NonNull Collection> vectorsListeners) {
super.setVectorsListeners(vectorsListeners);
return this;
}
/**
* This method allows you to specify maximum memory available for CoOccurrence map builder.
*
* Please note: this option can be considered a debugging method. In most cases setting proper -Xmx argument set to JVM is enough to limit this algorithm.
* Please note: this option won't override -Xmx JVM value.
*
* @param gbytes memory limit, in gigabytes
* @return
*/
public Builder maxMemory(int gbytes) {
this.maxmemory = gbytes;
return this;
}
/**
* This method allows you to specify SequenceElement that will be used as UNK element, if UNK is used
*
* @param element
* @return
*/
@Override
public Builder unknownElement(VocabWord element) {
super.unknownElement(element);
return this;
}
/**
* This method allows you to specify, if UNK word should be used internally
*
* @param reallyUse
* @return
*/
@Override
public Builder useUnknown(boolean reallyUse) {
super.useUnknown(reallyUse);
if (this.unknownElement == null) {
this.unknownElement(new VocabWord(1.0, Glove.DEFAULT_UNK));
}
return this;
}
public Glove build() {
presetTables();
Glove ret = new Glove();
// hardcoded value for glove
if (sentenceIterator != null) {
SentenceTransformer transformer = new SentenceTransformer.Builder().iterator(sentenceIterator)
.tokenizerFactory(tokenFactory).build();
this.iterator = new AbstractSequenceIterator.Builder<>(transformer).build();
}
ret.trainElementsVectors = true;
ret.trainSequenceVectors = false;
ret.useAdeGrad = true;
this.useAdaGrad = true;
ret.learningRate.set(this.learningRate);
ret.resetModel = this.resetModel;
ret.batchSize = this.batchSize;
ret.iterator = this.iterator;
ret.numEpochs = this.numEpochs;
ret.numIterations = this.iterations;
ret.layerSize = this.layerSize;
ret.useUnknown = this.useUnknown;
ret.unknownElement = this.unknownElement;
this.configuration.setLearningRate(this.learningRate);
this.configuration.setLayersSize(layerSize);
this.configuration.setHugeModelExpected(hugeModelExpected);
this.configuration.setWindow(window);
this.configuration.setMinWordFrequency(minWordFrequency);
this.configuration.setIterations(iterations);
this.configuration.setSeed(seed);
this.configuration.setBatchSize(batchSize);
this.configuration.setLearningRateDecayWords(learningRateDecayWords);
this.configuration.setMinLearningRate(minLearningRate);
this.configuration.setSampling(this.sampling);
this.configuration.setUseAdaGrad(useAdaGrad);
this.configuration.setNegative(negative);
this.configuration.setEpochs(this.numEpochs);
ret.configuration = this.configuration;
ret.lookupTable = this.lookupTable;
ret.vocab = this.vocabCache;
ret.modelUtils = this.modelUtils;
ret.eventListeners = this.vectorsListeners;
ret.elementsLearningAlgorithm = new GloVe.Builder().learningRate(this.learningRate)
.shuffle(this.shuffle).symmetric(this.symmetric).xMax(this.xMax).alpha(this.alpha)
.maxMemory(maxmemory).build();
return ret;
}
}
}