All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.ejml.simple.ops.SimpleOperations_FSCC Maven / Gradle / Ivy

/*
 * Copyright (c) 2021, Peter Abeles. All Rights Reserved.
 *
 * This file is part of Efficient Java Matrix Library (EJML).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.ejml.simple.ops;

import javax.annotation.Generated;
import org.ejml.concurrency.EjmlConcurrency;
import org.ejml.data.*;
import org.ejml.ops.MatrixIO;
import org.ejml.simple.ConvertToDenseException;
import org.ejml.simple.ConvertToImaginaryException;
import org.ejml.simple.SimpleSparseOperations;
import org.ejml.sparse.csc.CommonOps_FSCC;
import org.ejml.sparse.csc.CommonOps_MT_FSCC;
import org.ejml.sparse.csc.MatrixFeatures_FSCC;
import org.ejml.sparse.csc.NormOps_FSCC;
import org.ejml.sparse.csc.mult.Workspace_MT_FSCC;
import pabeles.concurrency.GrowArray;

import java.io.PrintStream;

/**
 * Implementation of {@link org.ejml.simple.SimpleOperations} for {@link FMatrixSparseCSC}.
 *
 * @author Peter Abeles
 */
@Generated("org.ejml.simple.ops.SimpleOperations_DSCC")
public class SimpleOperations_FSCC implements SimpleSparseOperations {

    // Workspace variables
    public transient IGrowArray gw = new IGrowArray();
    public transient FGrowArray gx = new FGrowArray();

    // Workspace for concurrent algorithms
    public transient GrowArray workspaceMT = new GrowArray<>(Workspace_MT_FSCC::new);
    public transient GrowArray workspaceA = new GrowArray<>(FGrowArray::new);

    @Override
    public void set( FMatrixSparseCSC A, int row, int column, /**/double value ) {
        A.set(row, column, (float)value);
    }

    @Override
    public void set( FMatrixSparseCSC A, int row, int column, /**/double real, /**/double imaginary ) {
        throw new ConvertToImaginaryException();
    }

    @Override
    public /**/double get( FMatrixSparseCSC A, int row, int column ) {
        return A.get(row, column);
    }

    @Override
    public void get( FMatrixSparseCSC A, int row, int column, /**/Complex_F64 value ) {
        value.real = A.get(row, column);
        value.imaginary = 0;
    }

    @Override
    public void fill( FMatrixSparseCSC A, /**/double value ) {
        if (value == 0) {
            A.zero();
        } else {
            throw new ConvertToDenseException();
        }
    }

    @Override
    public void transpose( FMatrixSparseCSC input, FMatrixSparseCSC output ) {
        CommonOps_FSCC.transpose(input, output, gw);
    }

    @Override
    public void mult( FMatrixSparseCSC A, FMatrixSparseCSC B, FMatrixSparseCSC output ) {
        if (EjmlConcurrency.useConcurrent(A)) {
            CommonOps_MT_FSCC.mult(A, B, output, workspaceMT);
        } else {
            CommonOps_FSCC.mult(A, B, output);
        }
    }

    @Override
    public void multTransA( FMatrixSparseCSC A, FMatrixSparseCSC B, FMatrixSparseCSC output ) {
        var At = new FMatrixSparseCSC(1, 1);
        CommonOps_FSCC.transpose(A, At, gw);

        if (EjmlConcurrency.useConcurrent(A)) {
            CommonOps_MT_FSCC.mult(A, B, output, workspaceMT);
        } else {
            CommonOps_FSCC.mult(At, B, output, gw, gx);
        }
    }

    @Override
    public void extractDiag( FMatrixSparseCSC input, FMatrixRMaj output ) {
        CommonOps_FSCC.extractDiag(input, output);
    }

    @Override
    public void multTransA( FMatrixSparseCSC A, FMatrixRMaj B, FMatrixRMaj output ) {
        if (EjmlConcurrency.useConcurrent(A)) {
            CommonOps_MT_FSCC.multTransA(A, B, output, workspaceA);
        } else {
            CommonOps_FSCC.multTransA(A, B, output, null);
        }
    }

    @Override
    public void mult( FMatrixSparseCSC A, FMatrixRMaj B, FMatrixRMaj output ) {
        if (EjmlConcurrency.useConcurrent(A)) {
            CommonOps_MT_FSCC.mult(A, B, output, workspaceA);
        } else {
            CommonOps_FSCC.mult(A, B, output);
        }
    }

    @Override
    public void kron( FMatrixSparseCSC A, FMatrixSparseCSC B, FMatrixSparseCSC output ) {
//        CommonOps_FSCC.kron(A,B,output);
        throw new RuntimeException("Unsupported. Make a feature request if you need this!");
    }

    @Override
    public void plus( FMatrixSparseCSC A, FMatrixSparseCSC B, FMatrixSparseCSC output ) {
        CommonOps_FSCC.add(1, A, 1, B, output, null, null);
    }

    @Override
    public void minus( FMatrixSparseCSC A, FMatrixSparseCSC B, FMatrixSparseCSC output ) {
        CommonOps_FSCC.add(1, A, -1, B, output, null, null);
    }

    @Override
    public void minus( FMatrixSparseCSC A, /**/double b, FMatrixSparseCSC output ) {
        throw new ConvertToDenseException();
    }

    @Override
    public void plus( FMatrixSparseCSC A, /**/double b, FMatrixSparseCSC output ) {
        throw new ConvertToDenseException();
    }

    @Override
    public void plus( FMatrixSparseCSC A, /**/double beta, FMatrixSparseCSC b, FMatrixSparseCSC output ) {
        if (EjmlConcurrency.useConcurrent(A)) {
            CommonOps_MT_FSCC.add(1, A, (float)beta, b, output, workspaceMT);
        } else {
            CommonOps_FSCC.add(1, A, (float)beta, b, output, gw, gx);
        }
    }

    @Override
    public void plus( /**/double alpha, FMatrixSparseCSC A, /**/double beta, FMatrixSparseCSC b, FMatrixSparseCSC output ) {
        if (EjmlConcurrency.useConcurrent(A)) {
            CommonOps_MT_FSCC.add((float)alpha, A, (float)beta, b, output, workspaceMT);
        } else {
            CommonOps_FSCC.add((float)alpha, A, (float)beta, b, output, gw, gx);
        }
    }

    @Override
    public /**/double dot( FMatrixSparseCSC A, FMatrixSparseCSC v ) {
        return CommonOps_FSCC.dotInnerColumns(A, 0, v, 0, gw, gx);
    }

    @Override
    public void scale( FMatrixSparseCSC A, /**/double val, FMatrixSparseCSC output ) {
        CommonOps_FSCC.scale((float)val, A, output);
    }

    @Override
    public void divide( FMatrixSparseCSC A, /**/double val, FMatrixSparseCSC output ) {
        CommonOps_FSCC.divide(A, (float)val, output);
    }

    @Override
    public boolean invert( FMatrixSparseCSC A, FMatrixSparseCSC output ) {
        return solve(A, output, CommonOps_FSCC.identity(A.numRows, A.numCols));
    }

    @Override
    public void setIdentity( FMatrixSparseCSC A ) {
        CommonOps_FSCC.setIdentity(A);
    }

    @Override
    public void pseudoInverse( FMatrixSparseCSC A, FMatrixSparseCSC output ) {
        throw new RuntimeException("Unsupported");
    }

    @Override
    public boolean solve( FMatrixSparseCSC A, FMatrixSparseCSC X, FMatrixSparseCSC B ) {
        return CommonOps_FSCC.solve(A, X, B);
    }

    public boolean solve( FMatrixSparseCSC A, FMatrixRMaj X, FMatrixRMaj B ) {
        return CommonOps_FSCC.solve(A, X, B);
    }

    @Override
    public void zero( FMatrixSparseCSC A ) {
        A.zero();
    }

    @Override
    public /**/double normF( FMatrixSparseCSC A ) {
        return NormOps_FSCC.normF(A);
    }

    @Override
    public /**/double conditionP2( FMatrixSparseCSC A ) {
        throw new RuntimeException("Unsupported");
    }

    @Override
    public /**/double determinant( FMatrixSparseCSC A ) {
        return CommonOps_FSCC.det(A);
    }

    @Override
    public /**/double trace( FMatrixSparseCSC A ) {
        return CommonOps_FSCC.trace(A);
    }

    @Override
    public void setRow( FMatrixSparseCSC A, int row, int startColumn, /**/double... values ) {
        // TODO Update with a more efficient algorithm
        for (int i = 0; i < values.length; i++) {
            A.set(row, startColumn + i, (float)values[i]);
        }
        // check to see if value are zero, if so ignore them

        // Do a pass through the matrix and see how many elements need to be added

        // see if the existing storage is enough

        // If it is enough ...
        // starting from the tail, move a chunk, insert, move the next chunk, ...etc

        // If not enough, create new arrays and construct it
    }

    @Override
    public void setColumn( FMatrixSparseCSC A, int column, int startRow,  /**/double... values ) {
        // TODO Update with a more efficient algorithm
        for (int i = 0; i < values.length; i++) {
            A.set(startRow + i, column, (float)values[i]);
        }
    }

    @Override
    public void extract( FMatrixSparseCSC src, int srcY0, int srcY1, int srcX0, int srcX1, FMatrixSparseCSC dst, int dstY0, int dstX0 ) {
        CommonOps_FSCC.extract(src, srcY0, srcY1, srcX0, srcX1, dst, dstY0, dstX0);
    }

    @Override
    public FMatrixSparseCSC diag( FMatrixSparseCSC A ) {
        FMatrixSparseCSC output;
        if (MatrixFeatures_FSCC.isVector(A)) {
            int N = Math.max(A.numCols, A.numRows);
            output = new FMatrixSparseCSC(N, N);
            CommonOps_FSCC.diag(output, A.nz_values, 0, N);
        } else {
            int N = Math.min(A.numCols, A.numRows);
            output = new FMatrixSparseCSC(N, 1);
            CommonOps_FSCC.extractDiag(A, output);
        }
        return output;
    }

    @Override
    public boolean hasUncountable( FMatrixSparseCSC M ) {
        return MatrixFeatures_FSCC.hasUncountable(M);
    }

    @Override
    public void changeSign( FMatrixSparseCSC a ) {
        CommonOps_FSCC.changeSign(a, a);
    }

    @Override
    public /**/double elementMax( FMatrixSparseCSC A ) {
        return CommonOps_FSCC.elementMax(A);
    }

    @Override
    public /**/double elementMin( FMatrixSparseCSC A ) {
        return CommonOps_FSCC.elementMin(A);
    }

    @Override
    public /**/double elementMaxAbs( FMatrixSparseCSC A ) {
        return CommonOps_FSCC.elementMaxAbs(A);
    }

    @Override
    public /**/double elementMinAbs( FMatrixSparseCSC A ) {
        return CommonOps_FSCC.elementMinAbs(A);
    }

    @Override
    public /**/double elementSum( FMatrixSparseCSC A ) {
        return CommonOps_FSCC.elementSum(A);
    }

    @Override
    public void elementMult( FMatrixSparseCSC A, FMatrixSparseCSC B, FMatrixSparseCSC output ) {
        CommonOps_FSCC.elementMult(A, B, output, null, null);
    }

    @Override
    public void elementDiv( FMatrixSparseCSC A, FMatrixSparseCSC B, FMatrixSparseCSC output ) {
        throw new ConvertToDenseException();
    }

    @Override
    public void elementPower( FMatrixSparseCSC A, FMatrixSparseCSC B, FMatrixSparseCSC output ) {
        throw new ConvertToDenseException();
    }

    @Override
    public void elementPower( FMatrixSparseCSC A, /**/double b, FMatrixSparseCSC output ) {
        throw new ConvertToDenseException();
    }

    @Override
    public void elementExp( FMatrixSparseCSC A, FMatrixSparseCSC output ) {
        throw new ConvertToDenseException();
    }

    @Override
    public void elementLog( FMatrixSparseCSC A, FMatrixSparseCSC output ) {
        throw new ConvertToDenseException();
    }

    @Override
    public boolean isIdentical( FMatrixSparseCSC A, FMatrixSparseCSC B, /**/double tol ) {
        return MatrixFeatures_FSCC.isEqualsSort(A, B, (float)tol);
    }

    @Override
    public void print( PrintStream out, Matrix mat, String format ) {
        MatrixIO.print(out, (FMatrixSparseCSC)mat, format);
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy