All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.glassfish.jersey.internal.guava.SortedLists Maven / Gradle / Ivy

There is a newer version: 4.0.0-M1
Show newest version
/*
 * Copyright (C) 2010 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */

package org.glassfish.jersey.internal.guava;

import java.util.Collections;
import java.util.Comparator;
import java.util.List;
import java.util.RandomAccess;

import static org.glassfish.jersey.internal.guava.Preconditions.checkNotNull;

/**
 * Static methods pertaining to sorted {@link List} instances.
 * 

* In this documentation, the terms greatest, greater, least, and * lesser are considered to refer to the comparator on the elements, and the terms * first and last are considered to refer to the elements' ordering in a * list. * * @author Louis Wasserman */ final class SortedLists { private SortedLists() { } /** * Searches the specified list for the specified object using the binary search algorithm. The * list must be sorted into ascending order according to the specified comparator (as by the * {@link Collections#sort(List, Comparator) Collections.sort(List, Comparator)} method), prior * to making this call. If it is not sorted, the results are undefined. *

*

If there are elements in the list which compare as equal to the key, the choice of * {@link KeyPresentBehavior} decides which index is returned. If no elements compare as equal to * the key, the choice of {@link KeyAbsentBehavior} decides which index is returned. *

*

This method runs in log(n) time on random-access lists, which offer near-constant-time * access to each list element. * * @param list the list to be searched. * @param key the value to be searched for. * @param comparator the comparator by which the list is ordered. * @param presentBehavior the specification for what to do if at least one element of the list * compares as equal to the key. * @param absentBehavior the specification for what to do if no elements of the list compare as * equal to the key. * @return the index determined by the {@code KeyPresentBehavior}, if the key is in the list; * otherwise the index determined by the {@code KeyAbsentBehavior}. */ public static int binarySearch(List list, E key, Comparator comparator, KeyPresentBehavior presentBehavior, KeyAbsentBehavior absentBehavior) { checkNotNull(comparator); checkNotNull(list); checkNotNull(presentBehavior); checkNotNull(absentBehavior); if (!(list instanceof RandomAccess)) { list = Lists.newArrayList(list); } // TODO(user): benchmark when it's best to do a linear search int lower = 0; int upper = list.size() - 1; while (lower <= upper) { int middle = (lower + upper) >>> 1; int c = comparator.compare(key, list.get(middle)); if (c < 0) { upper = middle - 1; } else if (c > 0) { lower = middle + 1; } else { return lower + presentBehavior.resultIndex( comparator, key, list.subList(lower, upper + 1), middle - lower); } } return absentBehavior.resultIndex(lower); } /** * A specification for which index to return if the list contains at least one element that * compares as equal to the key. */ public enum KeyPresentBehavior { /** * Return the index of any list element that compares as equal to the key. No guarantees are * made as to which index is returned, if more than one element compares as equal to the key. */ ANY_PRESENT { @Override int resultIndex( Comparator comparator, E key, List list, int foundIndex) { return foundIndex; } }, /** * Return the index of the last list element that compares as equal to the key. */ LAST_PRESENT { @Override int resultIndex( Comparator comparator, E key, List list, int foundIndex) { // Of course, we have to use binary search to find the precise // breakpoint... int lower = foundIndex; int upper = list.size() - 1; // Everything between lower and upper inclusive compares at >= 0. while (lower < upper) { int middle = (lower + upper + 1) >>> 1; int c = comparator.compare(list.get(middle), key); if (c > 0) { upper = middle - 1; } else { // c == 0 lower = middle; } } return lower; } }, /** * Return the index of the first list element that compares as equal to the key. */ FIRST_PRESENT { @Override int resultIndex( Comparator comparator, E key, List list, int foundIndex) { // Of course, we have to use binary search to find the precise // breakpoint... int lower = 0; int upper = foundIndex; // Of course, we have to use binary search to find the precise breakpoint... // Everything between lower and upper inclusive compares at <= 0. while (lower < upper) { int middle = (lower + upper) >>> 1; int c = comparator.compare(list.get(middle), key); if (c < 0) { lower = middle + 1; } else { // c == 0 upper = middle; } } return lower; } }, /** * Return the index of the first list element that compares as greater than the key, or {@code * list.size()} if there is no such element. */ FIRST_AFTER { @Override public int resultIndex( Comparator comparator, E key, List list, int foundIndex) { return LAST_PRESENT.resultIndex(comparator, key, list, foundIndex) + 1; } }; abstract int resultIndex( Comparator comparator, E key, List list, int foundIndex); } /** * A specification for which index to return if the list contains no elements that compare as * equal to the key. */ public enum KeyAbsentBehavior { /** * Return the index of the next higher element in the list, or {@code list.size()} if there is * no such element. */ NEXT_HIGHER { @Override public int resultIndex(int higherIndex) { return higherIndex; } }, /** * Return {@code ~insertionIndex}, where {@code insertionIndex} is defined as the point at * which the key would be inserted into the list: the index of the next higher element in the * list, or {@code list.size()} if there is no such element. *

*

Note that the return value will be {@code >= 0} if and only if there is an element of the * list that compares as equal to the key. *

*

This is equivalent to the behavior of * {@link Collections#binarySearch(List, Object)} when the key isn't present, since * {@code ~insertionIndex} is equal to {@code -1 - insertionIndex}. */ INVERTED_INSERTION_INDEX { @Override public int resultIndex(int higherIndex) { return ~higherIndex; } }; abstract int resultIndex(int higherIndex); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy