All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.oracle.truffle.api.strings.FastDoubleParser Maven / Gradle / Ivy

Go to download

Truffle is a multi-language framework for executing dynamic languages that achieves high performance when combined with Graal.

There is a newer version: 24.1.1
Show newest version
/*
 * Copyright (c) 2021, 2022, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * The Universal Permissive License (UPL), Version 1.0
 *
 * Subject to the condition set forth below, permission is hereby granted to any
 * person obtaining a copy of this software, associated documentation and/or
 * data (collectively the "Software"), free of charge and under any and all
 * copyright rights in the Software, and any and all patent rights owned or
 * freely licensable by each licensor hereunder covering either (i) the
 * unmodified Software as contributed to or provided by such licensor, or (ii)
 * the Larger Works (as defined below), to deal in both
 *
 * (a) the Software, and
 *
 * (b) any piece of software and/or hardware listed in the lrgrwrks.txt file if
 * one is included with the Software each a "Larger Work" to which the Software
 * is contributed by such licensors),
 *
 * without restriction, including without limitation the rights to copy, create
 * derivative works of, display, perform, and distribute the Software and make,
 * use, sell, offer for sale, import, export, have made, and have sold the
 * Software and the Larger Work(s), and to sublicense the foregoing rights on
 * either these or other terms.
 *
 * This license is subject to the following condition:
 *
 * The above copyright notice and either this complete permission notice or at a
 * minimum a reference to the UPL must be included in all copies or substantial
 * portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
package com.oracle.truffle.api.strings;

import static com.oracle.truffle.api.strings.NumberConversion.numberFormatException;
import static com.oracle.truffle.api.strings.TStringOps.readValue;
import static com.oracle.truffle.api.strings.TruffleString.NumberFormatException.Reason;

import java.nio.charset.StandardCharsets;

import com.oracle.truffle.api.CompilerDirectives.CompilationFinal;
import com.oracle.truffle.api.CompilerDirectives.TruffleBoundary;
import com.oracle.truffle.api.nodes.Node;
import com.oracle.truffle.api.profiles.BranchProfile;

/*
 * MIT License
 *
 * Copyright (c) 2021 Werner Randelshofer, Switzerland.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
 * associated documentation files (the "Software"), to deal in the Software without restriction,
 * including without limitation the rights to use, copy, modify, merge, publish, distribute,
 * sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all copies or
 * substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
 * NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */
/**
 * This is a C++ to Java port of Daniel Lemire's fast_double_parser.
 *
 * 

* The code has been changed, so that it parses the same syntax as * {@link Double#parseDouble(String)}. *

* References: *

*
Daniel Lemire, fast_double_parser, 4x faster than strtod. Apache License 2.0 or Boost * Software License.
*
github.com
* *
Daniel Lemire, fast_float number parsing library: 4x faster than strtod. Apache License 2.0. *
*
github.com
* *
Daniel Lemire, Number Parsing at a Gigabyte per Second, Software: Practice and Experience 51 * (8), 2021. arXiv.2101.11408v3 [cs.DS] 24 Feb 2021
*
arxiv.org
*
* * @see https://github.com/ * wrandelshofer/FastDoubleParser * @see https://github.com/lemire/ * fast_double_parser */ final class FastDoubleParser { private static final long MINIMAL_NINETEEN_DIGIT_INTEGER = 1000_00000_00000_00000L; private static final int MINIMAL_EIGHT_DIGIT_INTEGER = 10_000_000; /** * Special value in {@link #CHAR_TO_HEX_MAP} for the decimal point character. */ private static final byte DECIMAL_POINT_CLASS = -4; /** * Special value in {@link #CHAR_TO_HEX_MAP} for characters that are neither a hex digit nor a * decimal point character.. */ private static final byte OTHER_CLASS = -1; /** * A table of 128 entries or of entries up to including character 'p' would suffice. *

* However for some reason, performance is best, if this table has exactly 256 entries. */ @CompilationFinal(dimensions = 1) private static final byte[] CHAR_TO_HEX_MAP = new byte[256]; static { for (char ch = 0; ch < CHAR_TO_HEX_MAP.length; ch++) { CHAR_TO_HEX_MAP[ch] = OTHER_CLASS; } for (char ch = '0'; ch <= '9'; ch++) { CHAR_TO_HEX_MAP[ch] = (byte) (ch - '0'); } for (char ch = 'A'; ch <= 'F'; ch++) { CHAR_TO_HEX_MAP[ch] = (byte) (ch - 'A' + 10); } for (char ch = 'a'; ch <= 'f'; ch++) { CHAR_TO_HEX_MAP[ch] = (byte) (ch - 'a' + 10); } for (char ch = '.'; ch <= '.'; ch++) { CHAR_TO_HEX_MAP[ch] = DECIMAL_POINT_CLASS; } } private static boolean isDigit(int c) { return '0' <= c && c <= '9'; } /** * Returns a Double object holding the double value represented by the argument string * {@code str}. *

* This method can be used as a drop in for method {@link Double#valueOf(String)}. (Assuming * that the API of this method has not changed since Java SE 16). *

* Leading and trailing whitespace characters in {@code str} are ignored. Whitespace is removed * as if by the {@link String#trim()} method; that is, characters in the range [U+0000,U+0020]. *

* The rest of {@code str} should constitute a FloatValue as described by the lexical syntax * rules shown below:

*
*
FloatValue: *
[Sign] {@code NaN} *
[Sign] {@code Infinity} *
[Sign] DecimalFloatingPointLiteral *
[Sign] HexFloatingPointLiteral *
SignedInteger *
* *
*
HexFloatingPointLiteral: *
HexSignificand BinaryExponent *
* *
*
HexSignificand: *
HexNumeral *
HexNumeral {@code .} *
{@code 0x} [HexDigits] {@code .} HexDigits *
{@code 0X} [HexDigits] {@code .} HexDigits *
* *
*
HexSignificand: *
HexNumeral *
HexNumeral {@code .} *
{@code 0x} [HexDigits] {@code .} HexDigits *
{@code 0X} [HexDigits] {@code .} HexDigits *
* *
*
BinaryExponent: *
BinaryExponentIndicator SignedInteger *
* *
*
BinaryExponentIndicator: *
{@code p} *
{@code P} *
* *
*
DecimalFloatingPointLiteral: *
Digits {@code .} [Digits] [ExponentPart] *
{@code .} Digits [ExponentPart] *
Digits ExponentPart *
* *
*
ExponentPart: *
ExponentIndicator SignedInteger *
* *
*
ExponentIndicator: *
(one of) *
e E *
* *
*
SignedInteger: *
[Sign] Digits *
* *
*
Sign: *
(one of) *
+ - *
* *
*
Digits: *
Digit {Digit} *
* *
*
HexNumeral: *
{@code 0} {@code x} HexDigits *
{@code 0} {@code X} HexDigits *
* *
*
HexDigits: *
HexDigit {HexDigit} *
* *
*
HexDigit: *
(one of) *
{@code 0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F} *
*
* * * @param arrayA the string to be parsed, a byte array with characters in ISO-8859-1, ASCII or * UTF-8 encoding * @param off The index of the first byte to parse * @param len The number of bytes to parse * @return the parsed double value * @throws NumberFormatException if the string can not be parsed */ static double parseDouble(Node location, AbstractTruffleString a, Object arrayA, int strideA, int off, int len, BranchProfile errorProfile) throws TruffleString.NumberFormatException { final int endIndex = len + off; // Skip leading whitespace // ------------------- int index = skipWhitespace(a, arrayA, strideA, off, endIndex); if (index == endIndex) { errorProfile.enter(); throw numberFormatException(a, Reason.EMPTY); } int ch = readValue(a, arrayA, strideA, index); // Parse optional sign // ------------------- final boolean isNegative = ch == '-'; if (isNegative || ch == '+') { ch = ++index < endIndex ? readValue(a, arrayA, strideA, index) : 0; if (ch == 0) { errorProfile.enter(); throw numberFormatException(a, off, len, Reason.LONE_SIGN); } } // Parse NaN or Infinity // --------------------- if (ch == 'N') { return parseNaN(location, a, arrayA, strideA, index, endIndex, off, errorProfile); } else if (ch == 'I') { return parseInfinity(location, a, arrayA, strideA, index, endIndex, isNegative, off, errorProfile); } // Parse optional leading zero // --------------------------- final boolean hasLeadingZero = ch == '0'; if (hasLeadingZero) { ch = ++index < endIndex ? readValue(a, arrayA, strideA, index) : 0; if (ch == 'x' || ch == 'X') { return parseRestOfHexFloatingPointLiteral(location, a, arrayA, strideA, index + 1, off, endIndex, isNegative, errorProfile); } } return parseRestOfDecimalFloatLiteral(location, a, arrayA, strideA, index, off, endIndex, isNegative, hasLeadingZero, errorProfile); } /** * Tries to parse eight digits from a byte array provided in a long. * * @param value an array of 8 bytes in a long * @return the parsed digits or -1 on failure */ private static int tryToParseEightDigits(long value) { long val = value - 0x3030303030303030L; long l = ((value + 0x4646464646464646L) | val) & 0x8080808080808080L; if (l != 0L) { return -1; } long mask = 0x000000FF000000FFL; long mul1 = 0x000F424000000064L; // 100 + (1000000ULL << 32) long mul2 = 0x0000271000000001L; // 1 + (10000ULL << 32) val = (val * 10) + (val >>> 8); // val = (val * 2561) >> 8; val = (((val & mask) * mul1) + (((val >>> 16) & mask) * mul2)) >>> 32; return (int) (val); } private static double parseInfinity(Node location, AbstractTruffleString a, Object arrayA, int strideA, int curIndex, int endIndex, boolean negative, int off, BranchProfile errorProfile) throws TruffleString.NumberFormatException { int index = curIndex; if (index + 7 < endIndex && regionMatches(location, a, arrayA, strideA, index, TStringConstants.getInfinity(a.encoding()))) { index = skipWhitespace(a, arrayA, strideA, index + 8, endIndex); if (index < endIndex) { errorProfile.enter(); throw numberFormatException(a, off, endIndex - off, Reason.INVALID_CODEPOINT); } return negative ? Double.NEGATIVE_INFINITY : Double.POSITIVE_INFINITY; } else { errorProfile.enter(); throw numberFormatException(a, off, endIndex - off, Reason.INVALID_CODEPOINT); } } private static double parseNaN(Node location, AbstractTruffleString a, Object arrayA, int strideA, int curIndex, int endIndex, int off, BranchProfile errorProfile) throws TruffleString.NumberFormatException { int index = curIndex; if (index + 2 < endIndex && regionMatches(location, a, arrayA, strideA, index, TStringConstants.getNaN(a.encoding()))) { index = skipWhitespace(a, arrayA, strideA, index + 3, endIndex); if (index < endIndex) { errorProfile.enter(); throw numberFormatException(a, off, endIndex - off, Reason.INVALID_CODEPOINT); } return Double.NaN; } else { errorProfile.enter(); throw numberFormatException(a, off, endIndex - off, Reason.INVALID_CODEPOINT); } } private static boolean regionMatches(Node location, AbstractTruffleString a, Object arrayA, int strideA, int index, TruffleString b) { return TStringOps.regionEqualsWithOrMaskWithStride(location, a, arrayA, strideA, index, b, b.data(), b.stride(), 0, null, b.length()); } /** * Parses the following rules (more rules are defined in {@link #parseDouble}). *
*
RestOfDecimalFloatingPointLiteral: *
[Digits] {@code .} [Digits] [ExponentPart] *
{@code .} Digits [ExponentPart] *
[Digits] ExponentPart *
* * * * @param location * @param a the input string * @param curIndex index to the first character of RestOfHexFloatingPointLiteral * @param endIndex the end index of the string * @param isNegative if the resulting number is negative * @param hasLeadingZero if the digit '0' has been consumed * @return a double representation */ private static double parseRestOfDecimalFloatLiteral(Node location, AbstractTruffleString a, Object arrayA, int strideA, int curIndex, int startIndex, int endIndex, boolean isNegative, boolean hasLeadingZero, BranchProfile errorProfile) throws TruffleString.NumberFormatException { int index = curIndex; // Parse digits // ------------ // Note: a multiplication by a constant is cheaper than an // arbitrary integer multiplication. int len = endIndex - startIndex; long digits = 0; // digits is treated as an unsigned long int exponent = 0; final int indexOfFirstDigit = index; int virtualIndexOfPoint = -1; final int digitCount; int ch = 0; for (; index < endIndex; index++) { ch = readValue(a, arrayA, strideA, index); if (isDigit(ch)) { // This might overflow, we deal with it later. digits = 10 * digits + ch - '0'; } else if (ch == '.') { if (virtualIndexOfPoint != -1) { errorProfile.enter(); throw numberFormatException(a, startIndex, len, Reason.MULTIPLE_DECIMAL_POINTS); } virtualIndexOfPoint = index; if (strideA == 0) { while (index < endIndex - 9) { long val = TStringOps.readS3(arrayA, a.offset() + index + 1, (a.length() - (index + 1)) >> 3); int parsed = tryToParseEightDigits(val); if (parsed >= 0) { // This might overflow, we deal with it later. digits = digits * 100_000_000L + parsed; index += 8; } else { break; } } } } else { break; } } final int indexAfterDigits = index; if (virtualIndexOfPoint == -1) { digitCount = indexAfterDigits - indexOfFirstDigit; virtualIndexOfPoint = indexAfterDigits; } else { digitCount = indexAfterDigits - indexOfFirstDigit - 1; exponent = virtualIndexOfPoint - index + 1; } // Parse exponent number // --------------------- long expNumber = 0; final boolean hasExponent = (ch == 'e') || (ch == 'E'); if (hasExponent) { ch = ++index < endIndex ? readValue(a, arrayA, strideA, index) : 0; boolean negExp = ch == '-'; if (negExp || ch == '+') { ch = ++index < endIndex ? readValue(a, arrayA, strideA, index) : 0; } if (!isDigit(ch)) { errorProfile.enter(); throw numberFormatException(a, startIndex, len, Reason.INVALID_CODEPOINT); } do { // Guard against overflow of exp_number if (expNumber < MINIMAL_EIGHT_DIGIT_INTEGER) { expNumber = 10 * expNumber + ch - '0'; } ch = ++index < endIndex ? readValue(a, arrayA, strideA, index) : 0; } while (isDigit(ch)); if (negExp) { expNumber = -expNumber; } exponent += expNumber; } // Skip trailing whitespace // ------------------------ index = skipWhitespace(a, arrayA, strideA, index, endIndex); if (index < endIndex || !hasLeadingZero && digitCount == 0) { errorProfile.enter(); throw numberFormatException(a, startIndex, len, Reason.EMPTY); } // Re-parse digits in case of a potential overflow // ----------------------------------------------- final boolean isDigitsTruncated; int skipCountInTruncatedDigits = 0; // counts +1 if we skipped over the decimal point if (digitCount > 19) { digits = 0; for (index = indexOfFirstDigit; index < indexAfterDigits; index++) { ch = readValue(a, arrayA, strideA, index); if (ch == '.') { skipCountInTruncatedDigits++; } else { if (Long.compareUnsigned(digits, MINIMAL_NINETEEN_DIGIT_INTEGER) < 0) { digits = 10 * digits + ch - '0'; } else { break; } } } isDigitsTruncated = index < indexAfterDigits; } else { isDigitsTruncated = false; } double result = FastDoubleMath.decFloatLiteralToDouble(index, isNegative, digits, exponent, virtualIndexOfPoint, expNumber, isDigitsTruncated, skipCountInTruncatedDigits); return Double.isNaN(result) ? parseViaJavaString(location, a, arrayA, strideA, startIndex, len) : result; } /** * Parses the following rules (more rules are defined in {@link #parseDouble}). *
*
RestOfDecimalFloatingPointLiteral: *
[Digits] {@code .} [Digits] [ExponentPart] *
{@code .} Digits [ExponentPart] *
[Digits] ExponentPart *
*/ private static double parseViaJavaString(Node location, AbstractTruffleString a, Object arrayA, int strideA, int startIndex, int len) { final byte[] arrayStr; final int offsetStr; if (arrayA instanceof byte[] && strideA == 0) { arrayStr = (byte[]) arrayA; offsetStr = a.offset() + startIndex; } else { arrayStr = new byte[len]; TStringOps.arraycopyWithStride(location, arrayA, a.offset(), strideA, startIndex, arrayStr, 0, 0, 0, len); offsetStr = 0; } return callJavaStringParseDouble(len, arrayStr, offsetStr); } @TruffleBoundary private static double callJavaStringParseDouble(int len, byte[] arrayStr, int offsetStr) { return Double.parseDouble(new String(arrayStr, offsetStr, len, StandardCharsets.ISO_8859_1)); } /** * Parses the following rules (more rules are defined in {@link #parseDouble}). *
*
RestOfHexFloatingPointLiteral: *
RestOfHexSignificand BinaryExponent *
* *
*
RestOfHexSignificand: *
HexDigits *
HexDigits {@code .} *
[HexDigits] {@code .} HexDigits *
* * * * @param a the input string * @param curIndex index to the first character of RestOfHexFloatingPointLiteral * @param startIndex the start index of the string * @param endIndex the end index of the string * @param isNegative if the resulting number is negative * @return a double representation */ private static double parseRestOfHexFloatingPointLiteral(Node location, AbstractTruffleString a, Object arrayA, int strideA, int curIndex, int startIndex, int endIndex, boolean isNegative, BranchProfile errorProfile) throws TruffleString.NumberFormatException { int index = curIndex; int len = endIndex - startIndex; if (index >= endIndex) { errorProfile.enter(); throw numberFormatException(a, startIndex, len, Reason.MALFORMED_HEX_ESCAPE); } // Parse digits // ------------ long digits = 0; // digits is treated as an unsigned long int exponent = 0; final int indexOfFirstDigit = index; int virtualIndexOfPoint = -1; final int digitCount; int ch = 0; for (; index < endIndex; index++) { ch = readValue(a, arrayA, strideA, index); // Table look up is faster than a sequence of if-else-branches. int hexValue = ch > 0x7f ? OTHER_CLASS : CHAR_TO_HEX_MAP[ch]; if (hexValue >= 0) { digits = (digits << 4) | hexValue; // This might overflow, we deal with it // later. } else if (hexValue == DECIMAL_POINT_CLASS) { if (virtualIndexOfPoint != -1) { errorProfile.enter(); throw numberFormatException(a, startIndex, len, Reason.MULTIPLE_DECIMAL_POINTS); } virtualIndexOfPoint = index; } else { break; } } final int indexAfterDigits = index; if (virtualIndexOfPoint == -1) { digitCount = indexAfterDigits - indexOfFirstDigit; virtualIndexOfPoint = indexAfterDigits; } else { digitCount = indexAfterDigits - indexOfFirstDigit - 1; exponent = Math.min(virtualIndexOfPoint - index + 1, MINIMAL_EIGHT_DIGIT_INTEGER) * 4; } // Parse exponent number // --------------------- long expNumber = 0; final boolean hasExponent = (ch == 'p') || (ch == 'P'); if (hasExponent) { ch = ++index < endIndex ? readValue(a, arrayA, strideA, index) : 0; boolean negExp = ch == '-'; if (negExp || ch == '+') { ch = ++index < endIndex ? readValue(a, arrayA, strideA, index) : 0; } if (!isDigit(ch)) { errorProfile.enter(); throw numberFormatException(a, startIndex, len, Reason.INVALID_CODEPOINT); } do { // Guard against overflow of exp_number if (expNumber < MINIMAL_EIGHT_DIGIT_INTEGER) { expNumber = 10 * expNumber + ch - '0'; } ch = ++index < endIndex ? readValue(a, arrayA, strideA, index) : 0; } while (isDigit(ch)); if (negExp) { expNumber = -expNumber; } exponent += expNumber; } // Skip trailing whitespace // ------------------------ index = skipWhitespace(a, arrayA, strideA, index, endIndex); if (index < endIndex || digitCount == 0 && readValue(a, arrayA, strideA, virtualIndexOfPoint) != '.' || !hasExponent) { errorProfile.enter(); throw numberFormatException(a, startIndex, len, Reason.EMPTY); } // Re-parse digits in case of a potential overflow // ----------------------------------------------- final boolean isDigitsTruncated; int skipCountInTruncatedDigits = 0; // counts +1 if we skipped over the decimal point if (digitCount > 16) { digits = 0; for (index = indexOfFirstDigit; index < indexAfterDigits; index++) { ch = readValue(a, arrayA, strideA, index); // Table look up is faster than a sequence of if-else-branches. int hexValue = ch > 0x7f ? OTHER_CLASS : CHAR_TO_HEX_MAP[ch]; if (hexValue >= 0) { if (Long.compareUnsigned(digits, MINIMAL_NINETEEN_DIGIT_INTEGER) < 0) { digits = (digits << 4) | hexValue; } else { break; } } else { skipCountInTruncatedDigits++; } } isDigitsTruncated = (index < indexAfterDigits); } else { isDigitsTruncated = false; } double d = FastDoubleMath.hexFloatLiteralToDouble(index, isNegative, digits, exponent, virtualIndexOfPoint, expNumber, isDigitsTruncated, skipCountInTruncatedDigits); return Double.isNaN(d) ? parseViaJavaString(location, a, arrayA, strideA, startIndex, len) : d; } private static int skipWhitespace(AbstractTruffleString a, Object arrayA, int strideA, int startIndex, int endIndex) { int index = startIndex; for (; index < endIndex; index++) { if (readValue(a, arrayA, strideA, index) > 0x20) { break; } } return index; } /** * This class provides the mathematical functions needed by {@link FastDoubleParser}. *

* This is a C++ to Java port of Daniel Lemire's fast_double_parser. *

* The code contains enhancements from Daniel Lemire's fast_float_parser, so that it can parse * double Strings with very long sequences of numbers *

* References: *

*
Daniel Lemire, fast_double_parser, 4x faster than strtod. Apache License 2.0 or Boost * Software License.
*
github.com
* *
Daniel Lemire, fast_float number parsing library: 4x faster than strtod. Apache License * 2.0.
*
github.com
* *
Daniel Lemire, Number Parsing at a Gigabyte per Second, Software: Practice and Experience * 51 (8), 2021. arXiv.2101.11408v3 [cs.DS] 24 Feb 2021
*
arxiv.org
*
*

*/ private static final class FastDoubleMath { /** * The smallest non-zero float (binary64) is 2^-1074. We take as input numbers of the form w * x 10^q where w < 2^64. We have that {@literal w * 10^-343 < 2^(64-344) 5^-343 < 2^-1076}. *

* However, we have that * {@literal (2^64-1) * 10^-342 = (2^64-1) * 2^-342 * 5^-342 > 2^-1074}. Thus it is possible * for a number of the form w * 10^-342 where w is a 64-bit value to be a non-zero * floating-point number. *

* ******** *

* If we are solely interested in the *normal* numbers then the smallest value is 2^-1022. * We can generate a value larger than 2^-1022 with expressions of the form w * 10^-326. * Thus we need to pick FASTFLOAT_SMALLEST_POWER >= -326. *

* ******** *

* Any number of form w * 10^309 where w>= 1 is going to be infinite in binary64 so we never * need to worry about powers of 5 greater than 308. */ private static final int FASTFLOAT_DEC_SMALLEST_POWER = -325; private static final int FASTFLOAT_DEC_LARGEST_POWER = 308; private static final int FASTFLOAT_HEX_SMALLEST_POWER = Double.MIN_EXPONENT; private static final int FASTFLOAT_HEX_LARGEST_POWER = Double.MAX_EXPONENT; /** * Precomputed powers of ten from 10^0 to 10^22. These can be represented exactly using the * double type. */ @CompilationFinal(dimensions = 1) private static final double[] powerOfTen = { 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22}; /** * When mapping numbers from decimal to binary, we go from w * 10^q to m * 2^p but we have * 10^q = 5^q * 2^q, so effectively we are trying to match w * 2^q * 5^q to m * 2^p. Thus * the powers of two are not a concern since they can be represented exactly using the * binary notation, only the powers of five affect the binary significand. *

*

* The mantissas of powers of ten from -308 to 308, extended out to sixty four bits. The * array contains the powers of ten approximated as a 64-bit mantissa. It goes from * 10^FASTFLOAT_SMALLEST_POWER to 10^FASTFLOAT_LARGEST_POWER (inclusively). The mantissa is * truncated, and never rounded up. Uses about 5KB. */ @CompilationFinal(dimensions = 1) private static final long[] MANTISSA_64 = { 0xa5ced43b7e3e9188L, 0xcf42894a5dce35eaL, 0x818995ce7aa0e1b2L, 0xa1ebfb4219491a1fL, 0xca66fa129f9b60a6L, 0xfd00b897478238d0L, 0x9e20735e8cb16382L, 0xc5a890362fddbc62L, 0xf712b443bbd52b7bL, 0x9a6bb0aa55653b2dL, 0xc1069cd4eabe89f8L, 0xf148440a256e2c76L, 0x96cd2a865764dbcaL, 0xbc807527ed3e12bcL, 0xeba09271e88d976bL, 0x93445b8731587ea3L, 0xb8157268fdae9e4cL, 0xe61acf033d1a45dfL, 0x8fd0c16206306babL, 0xb3c4f1ba87bc8696L, 0xe0b62e2929aba83cL, 0x8c71dcd9ba0b4925L, 0xaf8e5410288e1b6fL, 0xdb71e91432b1a24aL, 0x892731ac9faf056eL, 0xab70fe17c79ac6caL, 0xd64d3d9db981787dL, 0x85f0468293f0eb4eL, 0xa76c582338ed2621L, 0xd1476e2c07286faaL, 0x82cca4db847945caL, 0xa37fce126597973cL, 0xcc5fc196fefd7d0cL, 0xff77b1fcbebcdc4fL, 0x9faacf3df73609b1L, 0xc795830d75038c1dL, 0xf97ae3d0d2446f25L, 0x9becce62836ac577L, 0xc2e801fb244576d5L, 0xf3a20279ed56d48aL, 0x9845418c345644d6L, 0xbe5691ef416bd60cL, 0xedec366b11c6cb8fL, 0x94b3a202eb1c3f39L, 0xb9e08a83a5e34f07L, 0xe858ad248f5c22c9L, 0x91376c36d99995beL, 0xb58547448ffffb2dL, 0xe2e69915b3fff9f9L, 0x8dd01fad907ffc3bL, 0xb1442798f49ffb4aL, 0xdd95317f31c7fa1dL, 0x8a7d3eef7f1cfc52L, 0xad1c8eab5ee43b66L, 0xd863b256369d4a40L, 0x873e4f75e2224e68L, 0xa90de3535aaae202L, 0xd3515c2831559a83L, 0x8412d9991ed58091L, 0xa5178fff668ae0b6L, 0xce5d73ff402d98e3L, 0x80fa687f881c7f8eL, 0xa139029f6a239f72L, 0xc987434744ac874eL, 0xfbe9141915d7a922L, 0x9d71ac8fada6c9b5L, 0xc4ce17b399107c22L, 0xf6019da07f549b2bL, 0x99c102844f94e0fbL, 0xc0314325637a1939L, 0xf03d93eebc589f88L, 0x96267c7535b763b5L, 0xbbb01b9283253ca2L, 0xea9c227723ee8bcbL, 0x92a1958a7675175fL, 0xb749faed14125d36L, 0xe51c79a85916f484L, 0x8f31cc0937ae58d2L, 0xb2fe3f0b8599ef07L, 0xdfbdcece67006ac9L, 0x8bd6a141006042bdL, 0xaecc49914078536dL, 0xda7f5bf590966848L, 0x888f99797a5e012dL, 0xaab37fd7d8f58178L, 0xd5605fcdcf32e1d6L, 0x855c3be0a17fcd26L, 0xa6b34ad8c9dfc06fL, 0xd0601d8efc57b08bL, 0x823c12795db6ce57L, 0xa2cb1717b52481edL, 0xcb7ddcdda26da268L, 0xfe5d54150b090b02L, 0x9efa548d26e5a6e1L, 0xc6b8e9b0709f109aL, 0xf867241c8cc6d4c0L, 0x9b407691d7fc44f8L, 0xc21094364dfb5636L, 0xf294b943e17a2bc4L, 0x979cf3ca6cec5b5aL, 0xbd8430bd08277231L, 0xece53cec4a314ebdL, 0x940f4613ae5ed136L, 0xb913179899f68584L, 0xe757dd7ec07426e5L, 0x9096ea6f3848984fL, 0xb4bca50b065abe63L, 0xe1ebce4dc7f16dfbL, 0x8d3360f09cf6e4bdL, 0xb080392cc4349decL, 0xdca04777f541c567L, 0x89e42caaf9491b60L, 0xac5d37d5b79b6239L, 0xd77485cb25823ac7L, 0x86a8d39ef77164bcL, 0xa8530886b54dbdebL, 0xd267caa862a12d66L, 0x8380dea93da4bc60L, 0xa46116538d0deb78L, 0xcd795be870516656L, 0x806bd9714632dff6L, 0xa086cfcd97bf97f3L, 0xc8a883c0fdaf7df0L, 0xfad2a4b13d1b5d6cL, 0x9cc3a6eec6311a63L, 0xc3f490aa77bd60fcL, 0xf4f1b4d515acb93bL, 0x991711052d8bf3c5L, 0xbf5cd54678eef0b6L, 0xef340a98172aace4L, 0x9580869f0e7aac0eL, 0xbae0a846d2195712L, 0xe998d258869facd7L, 0x91ff83775423cc06L, 0xb67f6455292cbf08L, 0xe41f3d6a7377eecaL, 0x8e938662882af53eL, 0xb23867fb2a35b28dL, 0xdec681f9f4c31f31L, 0x8b3c113c38f9f37eL, 0xae0b158b4738705eL, 0xd98ddaee19068c76L, 0x87f8a8d4cfa417c9L, 0xa9f6d30a038d1dbcL, 0xd47487cc8470652bL, 0x84c8d4dfd2c63f3bL, 0xa5fb0a17c777cf09L, 0xcf79cc9db955c2ccL, 0x81ac1fe293d599bfL, 0xa21727db38cb002fL, 0xca9cf1d206fdc03bL, 0xfd442e4688bd304aL, 0x9e4a9cec15763e2eL, 0xc5dd44271ad3cdbaL, 0xf7549530e188c128L, 0x9a94dd3e8cf578b9L, 0xc13a148e3032d6e7L, 0xf18899b1bc3f8ca1L, 0x96f5600f15a7b7e5L, 0xbcb2b812db11a5deL, 0xebdf661791d60f56L, 0x936b9fcebb25c995L, 0xb84687c269ef3bfbL, 0xe65829b3046b0afaL, 0x8ff71a0fe2c2e6dcL, 0xb3f4e093db73a093L, 0xe0f218b8d25088b8L, 0x8c974f7383725573L, 0xafbd2350644eeacfL, 0xdbac6c247d62a583L, 0x894bc396ce5da772L, 0xab9eb47c81f5114fL, 0xd686619ba27255a2L, 0x8613fd0145877585L, 0xa798fc4196e952e7L, 0xd17f3b51fca3a7a0L, 0x82ef85133de648c4L, 0xa3ab66580d5fdaf5L, 0xcc963fee10b7d1b3L, 0xffbbcfe994e5c61fL, 0x9fd561f1fd0f9bd3L, 0xc7caba6e7c5382c8L, 0xf9bd690a1b68637bL, 0x9c1661a651213e2dL, 0xc31bfa0fe5698db8L, 0xf3e2f893dec3f126L, 0x986ddb5c6b3a76b7L, 0xbe89523386091465L, 0xee2ba6c0678b597fL, 0x94db483840b717efL, 0xba121a4650e4ddebL, 0xe896a0d7e51e1566L, 0x915e2486ef32cd60L, 0xb5b5ada8aaff80b8L, 0xe3231912d5bf60e6L, 0x8df5efabc5979c8fL, 0xb1736b96b6fd83b3L, 0xddd0467c64bce4a0L, 0x8aa22c0dbef60ee4L, 0xad4ab7112eb3929dL, 0xd89d64d57a607744L, 0x87625f056c7c4a8bL, 0xa93af6c6c79b5d2dL, 0xd389b47879823479L, 0x843610cb4bf160cbL, 0xa54394fe1eedb8feL, 0xce947a3da6a9273eL, 0x811ccc668829b887L, 0xa163ff802a3426a8L, 0xc9bcff6034c13052L, 0xfc2c3f3841f17c67L, 0x9d9ba7832936edc0L, 0xc5029163f384a931L, 0xf64335bcf065d37dL, 0x99ea0196163fa42eL, 0xc06481fb9bcf8d39L, 0xf07da27a82c37088L, 0x964e858c91ba2655L, 0xbbe226efb628afeaL, 0xeadab0aba3b2dbe5L, 0x92c8ae6b464fc96fL, 0xb77ada0617e3bbcbL, 0xe55990879ddcaabdL, 0x8f57fa54c2a9eab6L, 0xb32df8e9f3546564L, 0xdff9772470297ebdL, 0x8bfbea76c619ef36L, 0xaefae51477a06b03L, 0xdab99e59958885c4L, 0x88b402f7fd75539bL, 0xaae103b5fcd2a881L, 0xd59944a37c0752a2L, 0x857fcae62d8493a5L, 0xa6dfbd9fb8e5b88eL, 0xd097ad07a71f26b2L, 0x825ecc24c873782fL, 0xa2f67f2dfa90563bL, 0xcbb41ef979346bcaL, 0xfea126b7d78186bcL, 0x9f24b832e6b0f436L, 0xc6ede63fa05d3143L, 0xf8a95fcf88747d94L, 0x9b69dbe1b548ce7cL, 0xc24452da229b021bL, 0xf2d56790ab41c2a2L, 0x97c560ba6b0919a5L, 0xbdb6b8e905cb600fL, 0xed246723473e3813L, 0x9436c0760c86e30bL, 0xb94470938fa89bceL, 0xe7958cb87392c2c2L, 0x90bd77f3483bb9b9L, 0xb4ecd5f01a4aa828L, 0xe2280b6c20dd5232L, 0x8d590723948a535fL, 0xb0af48ec79ace837L, 0xdcdb1b2798182244L, 0x8a08f0f8bf0f156bL, 0xac8b2d36eed2dac5L, 0xd7adf884aa879177L, 0x86ccbb52ea94baeaL, 0xa87fea27a539e9a5L, 0xd29fe4b18e88640eL, 0x83a3eeeef9153e89L, 0xa48ceaaab75a8e2bL, 0xcdb02555653131b6L, 0x808e17555f3ebf11L, 0xa0b19d2ab70e6ed6L, 0xc8de047564d20a8bL, 0xfb158592be068d2eL, 0x9ced737bb6c4183dL, 0xc428d05aa4751e4cL, 0xf53304714d9265dfL, 0x993fe2c6d07b7fabL, 0xbf8fdb78849a5f96L, 0xef73d256a5c0f77cL, 0x95a8637627989aadL, 0xbb127c53b17ec159L, 0xe9d71b689dde71afL, 0x9226712162ab070dL, 0xb6b00d69bb55c8d1L, 0xe45c10c42a2b3b05L, 0x8eb98a7a9a5b04e3L, 0xb267ed1940f1c61cL, 0xdf01e85f912e37a3L, 0x8b61313bbabce2c6L, 0xae397d8aa96c1b77L, 0xd9c7dced53c72255L, 0x881cea14545c7575L, 0xaa242499697392d2L, 0xd4ad2dbfc3d07787L, 0x84ec3c97da624ab4L, 0xa6274bbdd0fadd61L, 0xcfb11ead453994baL, 0x81ceb32c4b43fcf4L, 0xa2425ff75e14fc31L, 0xcad2f7f5359a3b3eL, 0xfd87b5f28300ca0dL, 0x9e74d1b791e07e48L, 0xc612062576589ddaL, 0xf79687aed3eec551L, 0x9abe14cd44753b52L, 0xc16d9a0095928a27L, 0xf1c90080baf72cb1L, 0x971da05074da7beeL, 0xbce5086492111aeaL, 0xec1e4a7db69561a5L, 0x9392ee8e921d5d07L, 0xb877aa3236a4b449L, 0xe69594bec44de15bL, 0x901d7cf73ab0acd9L, 0xb424dc35095cd80fL, 0xe12e13424bb40e13L, 0x8cbccc096f5088cbL, 0xafebff0bcb24aafeL, 0xdbe6fecebdedd5beL, 0x89705f4136b4a597L, 0xabcc77118461cefcL, 0xd6bf94d5e57a42bcL, 0x8637bd05af6c69b5L, 0xa7c5ac471b478423L, 0xd1b71758e219652bL, 0x83126e978d4fdf3bL, 0xa3d70a3d70a3d70aL, 0xccccccccccccccccL, 0x8000000000000000L, 0xa000000000000000L, 0xc800000000000000L, 0xfa00000000000000L, 0x9c40000000000000L, 0xc350000000000000L, 0xf424000000000000L, 0x9896800000000000L, 0xbebc200000000000L, 0xee6b280000000000L, 0x9502f90000000000L, 0xba43b74000000000L, 0xe8d4a51000000000L, 0x9184e72a00000000L, 0xb5e620f480000000L, 0xe35fa931a0000000L, 0x8e1bc9bf04000000L, 0xb1a2bc2ec5000000L, 0xde0b6b3a76400000L, 0x8ac7230489e80000L, 0xad78ebc5ac620000L, 0xd8d726b7177a8000L, 0x878678326eac9000L, 0xa968163f0a57b400L, 0xd3c21bcecceda100L, 0x84595161401484a0L, 0xa56fa5b99019a5c8L, 0xcecb8f27f4200f3aL, 0x813f3978f8940984L, 0xa18f07d736b90be5L, 0xc9f2c9cd04674edeL, 0xfc6f7c4045812296L, 0x9dc5ada82b70b59dL, 0xc5371912364ce305L, 0xf684df56c3e01bc6L, 0x9a130b963a6c115cL, 0xc097ce7bc90715b3L, 0xf0bdc21abb48db20L, 0x96769950b50d88f4L, 0xbc143fa4e250eb31L, 0xeb194f8e1ae525fdL, 0x92efd1b8d0cf37beL, 0xb7abc627050305adL, 0xe596b7b0c643c719L, 0x8f7e32ce7bea5c6fL, 0xb35dbf821ae4f38bL, 0xe0352f62a19e306eL, 0x8c213d9da502de45L, 0xaf298d050e4395d6L, 0xdaf3f04651d47b4cL, 0x88d8762bf324cd0fL, 0xab0e93b6efee0053L, 0xd5d238a4abe98068L, 0x85a36366eb71f041L, 0xa70c3c40a64e6c51L, 0xd0cf4b50cfe20765L, 0x82818f1281ed449fL, 0xa321f2d7226895c7L, 0xcbea6f8ceb02bb39L, 0xfee50b7025c36a08L, 0x9f4f2726179a2245L, 0xc722f0ef9d80aad6L, 0xf8ebad2b84e0d58bL, 0x9b934c3b330c8577L, 0xc2781f49ffcfa6d5L, 0xf316271c7fc3908aL, 0x97edd871cfda3a56L, 0xbde94e8e43d0c8ecL, 0xed63a231d4c4fb27L, 0x945e455f24fb1cf8L, 0xb975d6b6ee39e436L, 0xe7d34c64a9c85d44L, 0x90e40fbeea1d3a4aL, 0xb51d13aea4a488ddL, 0xe264589a4dcdab14L, 0x8d7eb76070a08aecL, 0xb0de65388cc8ada8L, 0xdd15fe86affad912L, 0x8a2dbf142dfcc7abL, 0xacb92ed9397bf996L, 0xd7e77a8f87daf7fbL, 0x86f0ac99b4e8dafdL, 0xa8acd7c0222311bcL, 0xd2d80db02aabd62bL, 0x83c7088e1aab65dbL, 0xa4b8cab1a1563f52L, 0xcde6fd5e09abcf26L, 0x80b05e5ac60b6178L, 0xa0dc75f1778e39d6L, 0xc913936dd571c84cL, 0xfb5878494ace3a5fL, 0x9d174b2dcec0e47bL, 0xc45d1df942711d9aL, 0xf5746577930d6500L, 0x9968bf6abbe85f20L, 0xbfc2ef456ae276e8L, 0xefb3ab16c59b14a2L, 0x95d04aee3b80ece5L, 0xbb445da9ca61281fL, 0xea1575143cf97226L, 0x924d692ca61be758L, 0xb6e0c377cfa2e12eL, 0xe498f455c38b997aL, 0x8edf98b59a373fecL, 0xb2977ee300c50fe7L, 0xdf3d5e9bc0f653e1L, 0x8b865b215899f46cL, 0xae67f1e9aec07187L, 0xda01ee641a708de9L, 0x884134fe908658b2L, 0xaa51823e34a7eedeL, 0xd4e5e2cdc1d1ea96L, 0x850fadc09923329eL, 0xa6539930bf6bff45L, 0xcfe87f7cef46ff16L, 0x81f14fae158c5f6eL, 0xa26da3999aef7749L, 0xcb090c8001ab551cL, 0xfdcb4fa002162a63L, 0x9e9f11c4014dda7eL, 0xc646d63501a1511dL, 0xf7d88bc24209a565L, 0x9ae757596946075fL, 0xc1a12d2fc3978937L, 0xf209787bb47d6b84L, 0x9745eb4d50ce6332L, 0xbd176620a501fbffL, 0xec5d3fa8ce427affL, 0x93ba47c980e98cdfL, 0xb8a8d9bbe123f017L, 0xe6d3102ad96cec1dL, 0x9043ea1ac7e41392L, 0xb454e4a179dd1877L, 0xe16a1dc9d8545e94L, 0x8ce2529e2734bb1dL, 0xb01ae745b101e9e4L, 0xdc21a1171d42645dL, 0x899504ae72497ebaL, 0xabfa45da0edbde69L, 0xd6f8d7509292d603L, 0x865b86925b9bc5c2L, 0xa7f26836f282b732L, 0xd1ef0244af2364ffL, 0x8335616aed761f1fL, 0xa402b9c5a8d3a6e7L, 0xcd036837130890a1L, 0x802221226be55a64L, 0xa02aa96b06deb0fdL, 0xc83553c5c8965d3dL, 0xfa42a8b73abbf48cL, 0x9c69a97284b578d7L, 0xc38413cf25e2d70dL, 0xf46518c2ef5b8cd1L, 0x98bf2f79d5993802L, 0xbeeefb584aff8603L, 0xeeaaba2e5dbf6784L, 0x952ab45cfa97a0b2L, 0xba756174393d88dfL, 0xe912b9d1478ceb17L, 0x91abb422ccb812eeL, 0xb616a12b7fe617aaL, 0xe39c49765fdf9d94L, 0x8e41ade9fbebc27dL, 0xb1d219647ae6b31cL, 0xde469fbd99a05fe3L, 0x8aec23d680043beeL, 0xada72ccc20054ae9L, 0xd910f7ff28069da4L, 0x87aa9aff79042286L, 0xa99541bf57452b28L, 0xd3fa922f2d1675f2L, 0x847c9b5d7c2e09b7L, 0xa59bc234db398c25L, 0xcf02b2c21207ef2eL, 0x8161afb94b44f57dL, 0xa1ba1ba79e1632dcL, 0xca28a291859bbf93L, 0xfcb2cb35e702af78L, 0x9defbf01b061adabL, 0xc56baec21c7a1916L, 0xf6c69a72a3989f5bL, 0x9a3c2087a63f6399L, 0xc0cb28a98fcf3c7fL, 0xf0fdf2d3f3c30b9fL, 0x969eb7c47859e743L, 0xbc4665b596706114L, 0xeb57ff22fc0c7959L, 0x9316ff75dd87cbd8L, 0xb7dcbf5354e9beceL, 0xe5d3ef282a242e81L, 0x8fa475791a569d10L, 0xb38d92d760ec4455L, 0xe070f78d3927556aL, 0x8c469ab843b89562L, 0xaf58416654a6babbL, 0xdb2e51bfe9d0696aL, 0x88fcf317f22241e2L, 0xab3c2fddeeaad25aL, 0xd60b3bd56a5586f1L, 0x85c7056562757456L, 0xa738c6bebb12d16cL, 0xd106f86e69d785c7L, 0x82a45b450226b39cL, 0xa34d721642b06084L, 0xcc20ce9bd35c78a5L, 0xff290242c83396ceL, 0x9f79a169bd203e41L, 0xc75809c42c684dd1L, 0xf92e0c3537826145L, 0x9bbcc7a142b17ccbL, 0xc2abf989935ddbfeL, 0xf356f7ebf83552feL, 0x98165af37b2153deL, 0xbe1bf1b059e9a8d6L, 0xeda2ee1c7064130cL, 0x9485d4d1c63e8be7L, 0xb9a74a0637ce2ee1L, 0xe8111c87c5c1ba99L, 0x910ab1d4db9914a0L, 0xb54d5e4a127f59c8L, 0xe2a0b5dc971f303aL, 0x8da471a9de737e24L, 0xb10d8e1456105dadL, 0xdd50f1996b947518L, 0x8a5296ffe33cc92fL, 0xace73cbfdc0bfb7bL, 0xd8210befd30efa5aL, 0x8714a775e3e95c78L, 0xa8d9d1535ce3b396L, 0xd31045a8341ca07cL, 0x83ea2b892091e44dL, 0xa4e4b66b68b65d60L, 0xce1de40642e3f4b9L, 0x80d2ae83e9ce78f3L, 0xa1075a24e4421730L, 0xc94930ae1d529cfcL, 0xfb9b7cd9a4a7443cL, 0x9d412e0806e88aa5L, 0xc491798a08a2ad4eL, 0xf5b5d7ec8acb58a2L, 0x9991a6f3d6bf1765L, 0xbff610b0cc6edd3fL, 0xeff394dcff8a948eL, 0x95f83d0a1fb69cd9L, 0xbb764c4ca7a4440fL, 0xea53df5fd18d5513L, 0x92746b9be2f8552cL, 0xb7118682dbb66a77L, 0xe4d5e82392a40515L, 0x8f05b1163ba6832dL, 0xb2c71d5bca9023f8L, 0xdf78e4b2bd342cf6L, 0x8bab8eefb6409c1aL, 0xae9672aba3d0c320L, 0xda3c0f568cc4f3e8L, 0x8865899617fb1871L, 0xaa7eebfb9df9de8dL, 0xd51ea6fa85785631L, 0x8533285c936b35deL, 0xa67ff273b8460356L, 0xd01fef10a657842cL, 0x8213f56a67f6b29bL, 0xa298f2c501f45f42L, 0xcb3f2f7642717713L, 0xfe0efb53d30dd4d7L, 0x9ec95d1463e8a506L, 0xc67bb4597ce2ce48L, 0xf81aa16fdc1b81daL, 0x9b10a4e5e9913128L, 0xc1d4ce1f63f57d72L, 0xf24a01a73cf2dccfL, 0x976e41088617ca01L, 0xbd49d14aa79dbc82L, 0xec9c459d51852ba2L, 0x93e1ab8252f33b45L, 0xb8da1662e7b00a17L, 0xe7109bfba19c0c9dL, 0x906a617d450187e2L, 0xb484f9dc9641e9daL, 0xe1a63853bbd26451L, 0x8d07e33455637eb2L, 0xb049dc016abc5e5fL, 0xdc5c5301c56b75f7L, 0x89b9b3e11b6329baL, 0xac2820d9623bf429L, 0xd732290fbacaf133L, 0x867f59a9d4bed6c0L, 0xa81f301449ee8c70L, 0xd226fc195c6a2f8cL, 0x83585d8fd9c25db7L, 0xa42e74f3d032f525L, 0xcd3a1230c43fb26fL, 0x80444b5e7aa7cf85L, 0xa0555e361951c366L, 0xc86ab5c39fa63440L, 0xfa856334878fc150L, 0x9c935e00d4b9d8d2L, 0xc3b8358109e84f07L, 0xf4a642e14c6262c8L, 0x98e7e9cccfbd7dbdL, 0xbf21e44003acdd2cL, 0xeeea5d5004981478L, 0x95527a5202df0ccbL, 0xbaa718e68396cffdL, 0xe950df20247c83fdL, 0x91d28b7416cdd27eL, 0xb6472e511c81471dL, 0xe3d8f9e563a198e5L, 0x8e679c2f5e44ff8fL}; /** * A complement to mantissa_64 complete to a 128-bit mantissa. Uses about 5KB but is rarely * accessed. */ @CompilationFinal(dimensions = 1) private static final long[] MANTISSA_128 = { 0x419ea3bd35385e2dL, 0x52064cac828675b9L, 0x7343efebd1940993L, 0x1014ebe6c5f90bf8L, 0xd41a26e077774ef6L, 0x8920b098955522b4L, 0x55b46e5f5d5535b0L, 0xeb2189f734aa831dL, 0xa5e9ec7501d523e4L, 0x47b233c92125366eL, 0x999ec0bb696e840aL, 0xc00670ea43ca250dL, 0x380406926a5e5728L, 0xc605083704f5ecf2L, 0xf7864a44c633682eL, 0x7ab3ee6afbe0211dL, 0x5960ea05bad82964L, 0x6fb92487298e33bdL, 0xa5d3b6d479f8e056L, 0x8f48a4899877186cL, 0x331acdabfe94de87L, 0x9ff0c08b7f1d0b14L, 0x7ecf0ae5ee44dd9L, 0xc9e82cd9f69d6150L, 0xbe311c083a225cd2L, 0x6dbd630a48aaf406L, 0x92cbbccdad5b108L, 0x25bbf56008c58ea5L, 0xaf2af2b80af6f24eL, 0x1af5af660db4aee1L, 0x50d98d9fc890ed4dL, 0xe50ff107bab528a0L, 0x1e53ed49a96272c8L, 0x25e8e89c13bb0f7aL, 0x77b191618c54e9acL, 0xd59df5b9ef6a2417L, 0x4b0573286b44ad1dL, 0x4ee367f9430aec32L, 0x229c41f793cda73fL, 0x6b43527578c1110fL, 0x830a13896b78aaa9L, 0x23cc986bc656d553L, 0x2cbfbe86b7ec8aa8L, 0x7bf7d71432f3d6a9L, 0xdaf5ccd93fb0cc53L, 0xd1b3400f8f9cff68L, 0x23100809b9c21fa1L, 0xabd40a0c2832a78aL, 0x16c90c8f323f516cL, 0xae3da7d97f6792e3L, 0x99cd11cfdf41779cL, 0x40405643d711d583L, 0x482835ea666b2572L, 0xda3243650005eecfL, 0x90bed43e40076a82L, 0x5a7744a6e804a291L, 0x711515d0a205cb36L, 0xd5a5b44ca873e03L, 0xe858790afe9486c2L, 0x626e974dbe39a872L, 0xfb0a3d212dc8128fL, 0x7ce66634bc9d0b99L, 0x1c1fffc1ebc44e80L, 0xa327ffb266b56220L, 0x4bf1ff9f0062baa8L, 0x6f773fc3603db4a9L, 0xcb550fb4384d21d3L, 0x7e2a53a146606a48L, 0x2eda7444cbfc426dL, 0xfa911155fefb5308L, 0x793555ab7eba27caL, 0x4bc1558b2f3458deL, 0x9eb1aaedfb016f16L, 0x465e15a979c1cadcL, 0xbfacd89ec191ec9L, 0xcef980ec671f667bL, 0x82b7e12780e7401aL, 0xd1b2ecb8b0908810L, 0x861fa7e6dcb4aa15L, 0x67a791e093e1d49aL, 0xe0c8bb2c5c6d24e0L, 0x58fae9f773886e18L, 0xaf39a475506a899eL, 0x6d8406c952429603L, 0xc8e5087ba6d33b83L, 0xfb1e4a9a90880a64L, 0x5cf2eea09a55067fL, 0xf42faa48c0ea481eL, 0xf13b94daf124da26L, 0x76c53d08d6b70858L, 0x54768c4b0c64ca6eL, 0xa9942f5dcf7dfd09L, 0xd3f93b35435d7c4cL, 0xc47bc5014a1a6dafL, 0x359ab6419ca1091bL, 0xc30163d203c94b62L, 0x79e0de63425dcf1dL, 0x985915fc12f542e4L, 0x3e6f5b7b17b2939dL, 0xa705992ceecf9c42L, 0x50c6ff782a838353L, 0xa4f8bf5635246428L, 0x871b7795e136be99L, 0x28e2557b59846e3fL, 0x331aeada2fe589cfL, 0x3ff0d2c85def7621L, 0xfed077a756b53a9L, 0xd3e8495912c62894L, 0x64712dd7abbbd95cL, 0xbd8d794d96aacfb3L, 0xecf0d7a0fc5583a0L, 0xf41686c49db57244L, 0x311c2875c522ced5L, 0x7d633293366b828bL, 0xae5dff9c02033197L, 0xd9f57f830283fdfcL, 0xd072df63c324fd7bL, 0x4247cb9e59f71e6dL, 0x52d9be85f074e608L, 0x67902e276c921f8bL, 0xba1cd8a3db53b6L, 0x80e8a40eccd228a4L, 0x6122cd128006b2cdL, 0x796b805720085f81L, 0xcbe3303674053bb0L, 0xbedbfc4411068a9cL, 0xee92fb5515482d44L, 0x751bdd152d4d1c4aL, 0xd262d45a78a0635dL, 0x86fb897116c87c34L, 0xd45d35e6ae3d4da0L, 0x8974836059cca109L, 0x2bd1a438703fc94bL, 0x7b6306a34627ddcfL, 0x1a3bc84c17b1d542L, 0x20caba5f1d9e4a93L, 0x547eb47b7282ee9cL, 0xe99e619a4f23aa43L, 0x6405fa00e2ec94d4L, 0xde83bc408dd3dd04L, 0x9624ab50b148d445L, 0x3badd624dd9b0957L, 0xe54ca5d70a80e5d6L, 0x5e9fcf4ccd211f4cL, 0x7647c3200069671fL, 0x29ecd9f40041e073L, 0xf468107100525890L, 0x7182148d4066eeb4L, 0xc6f14cd848405530L, 0xb8ada00e5a506a7cL, 0xa6d90811f0e4851cL, 0x908f4a166d1da663L, 0x9a598e4e043287feL, 0x40eff1e1853f29fdL, 0xd12bee59e68ef47cL, 0x82bb74f8301958ceL, 0xe36a52363c1faf01L, 0xdc44e6c3cb279ac1L, 0x29ab103a5ef8c0b9L, 0x7415d448f6b6f0e7L, 0x111b495b3464ad21L, 0xcab10dd900beec34L, 0x3d5d514f40eea742L, 0xcb4a5a3112a5112L, 0x47f0e785eaba72abL, 0x59ed216765690f56L, 0x306869c13ec3532cL, 0x1e414218c73a13fbL, 0xe5d1929ef90898faL, 0xdf45f746b74abf39L, 0x6b8bba8c328eb783L, 0x66ea92f3f326564L, 0xc80a537b0efefebdL, 0xbd06742ce95f5f36L, 0x2c48113823b73704L, 0xf75a15862ca504c5L, 0x9a984d73dbe722fbL, 0xc13e60d0d2e0ebbaL, 0x318df905079926a8L, 0xfdf17746497f7052L, 0xfeb6ea8bedefa633L, 0xfe64a52ee96b8fc0L, 0x3dfdce7aa3c673b0L, 0x6bea10ca65c084eL, 0x486e494fcff30a62L, 0x5a89dba3c3efccfaL, 0xf89629465a75e01cL, 0xf6bbb397f1135823L, 0x746aa07ded582e2cL, 0xa8c2a44eb4571cdcL, 0x92f34d62616ce413L, 0x77b020baf9c81d17L, 0xace1474dc1d122eL, 0xd819992132456baL, 0x10e1fff697ed6c69L, 0xca8d3ffa1ef463c1L, 0xbd308ff8a6b17cb2L, 0xac7cb3f6d05ddbdeL, 0x6bcdf07a423aa96bL, 0x86c16c98d2c953c6L, 0xe871c7bf077ba8b7L, 0x11471cd764ad4972L, 0xd598e40d3dd89bcfL, 0x4aff1d108d4ec2c3L, 0xcedf722a585139baL, 0xc2974eb4ee658828L, 0x733d226229feea32L, 0x806357d5a3f525fL, 0xca07c2dcb0cf26f7L, 0xfc89b393dd02f0b5L, 0xbbac2078d443ace2L, 0xd54b944b84aa4c0dL, 0xa9e795e65d4df11L, 0x4d4617b5ff4a16d5L, 0x504bced1bf8e4e45L, 0xe45ec2862f71e1d6L, 0x5d767327bb4e5a4cL, 0x3a6a07f8d510f86fL, 0x890489f70a55368bL, 0x2b45ac74ccea842eL, 0x3b0b8bc90012929dL, 0x9ce6ebb40173744L, 0xcc420a6a101d0515L, 0x9fa946824a12232dL, 0x47939822dc96abf9L, 0x59787e2b93bc56f7L, 0x57eb4edb3c55b65aL, 0xede622920b6b23f1L, 0xe95fab368e45ecedL, 0x11dbcb0218ebb414L, 0xd652bdc29f26a119L, 0x4be76d3346f0495fL, 0x6f70a4400c562ddbL, 0xcb4ccd500f6bb952L, 0x7e2000a41346a7a7L, 0x8ed400668c0c28c8L, 0x728900802f0f32faL, 0x4f2b40a03ad2ffb9L, 0xe2f610c84987bfa8L, 0xdd9ca7d2df4d7c9L, 0x91503d1c79720dbbL, 0x75a44c6397ce912aL, 0xc986afbe3ee11abaL, 0xfbe85badce996168L, 0xfae27299423fb9c3L, 0xdccd879fc967d41aL, 0x5400e987bbc1c920L, 0x290123e9aab23b68L, 0xf9a0b6720aaf6521L, 0xf808e40e8d5b3e69L, 0xb60b1d1230b20e04L, 0xb1c6f22b5e6f48c2L, 0x1e38aeb6360b1af3L, 0x25c6da63c38de1b0L, 0x579c487e5a38ad0eL, 0x2d835a9df0c6d851L, 0xf8e431456cf88e65L, 0x1b8e9ecb641b58ffL, 0xe272467e3d222f3fL, 0x5b0ed81dcc6abb0fL, 0x98e947129fc2b4e9L, 0x3f2398d747b36224L, 0x8eec7f0d19a03aadL, 0x1953cf68300424acL, 0x5fa8c3423c052dd7L, 0x3792f412cb06794dL, 0xe2bbd88bbee40bd0L, 0x5b6aceaeae9d0ec4L, 0xf245825a5a445275L, 0xeed6e2f0f0d56712L, 0x55464dd69685606bL, 0xaa97e14c3c26b886L, 0xd53dd99f4b3066a8L, 0xe546a8038efe4029L, 0xde98520472bdd033L, 0x963e66858f6d4440L, 0xdde7001379a44aa8L, 0x5560c018580d5d52L, 0xaab8f01e6e10b4a6L, 0xcab3961304ca70e8L, 0x3d607b97c5fd0d22L, 0x8cb89a7db77c506aL, 0x77f3608e92adb242L, 0x55f038b237591ed3L, 0x6b6c46dec52f6688L, 0x2323ac4b3b3da015L, 0xabec975e0a0d081aL, 0x96e7bd358c904a21L, 0x7e50d64177da2e54L, 0xdde50bd1d5d0b9e9L, 0x955e4ec64b44e864L, 0xbd5af13bef0b113eL, 0xecb1ad8aeacdd58eL, 0x67de18eda5814af2L, 0x80eacf948770ced7L, 0xa1258379a94d028dL, 0x96ee45813a04330L, 0x8bca9d6e188853fcL, 0x775ea264cf55347dL, 0x95364afe032a819dL, 0x3a83ddbd83f52204L, 0xc4926a9672793542L, 0x75b7053c0f178293L, 0x5324c68b12dd6338L, 0xd3f6fc16ebca5e03L, 0x88f4bb1ca6bcf584L, 0x2b31e9e3d06c32e5L, 0x3aff322e62439fcfL, 0x9befeb9fad487c2L, 0x4c2ebe687989a9b3L, 0xf9d37014bf60a10L, 0x538484c19ef38c94L, 0x2865a5f206b06fb9L, 0xf93f87b7442e45d3L, 0xf78f69a51539d748L, 0xb573440e5a884d1bL, 0x31680a88f8953030L, 0xfdc20d2b36ba7c3dL, 0x3d32907604691b4cL, 0xa63f9a49c2c1b10fL, 0xfcf80dc33721d53L, 0xd3c36113404ea4a8L, 0x645a1cac083126e9L, 0x3d70a3d70a3d70a3L, 0xccccccccccccccccL, 0x0L, 0x0L, 0x0L, 0x0L, 0x0L, 0x0L, 0x0L, 0x0L, 0x0L, 0x0L, 0x0L, 0x0L, 0x0L, 0x0L, 0x0L, 0x0L, 0x0L, 0x0L, 0x0L, 0x0L, 0x0L, 0x0L, 0x0L, 0x0L, 0x0L, 0x0L, 0x0L, 0x0L, 0x4000000000000000L, 0x5000000000000000L, 0xa400000000000000L, 0x4d00000000000000L, 0xf020000000000000L, 0x6c28000000000000L, 0xc732000000000000L, 0x3c7f400000000000L, 0x4b9f100000000000L, 0x1e86d40000000000L, 0x1314448000000000L, 0x17d955a000000000L, 0x5dcfab0800000000L, 0x5aa1cae500000000L, 0xf14a3d9e40000000L, 0x6d9ccd05d0000000L, 0xe4820023a2000000L, 0xdda2802c8a800000L, 0xd50b2037ad200000L, 0x4526f422cc340000L, 0x9670b12b7f410000L, 0x3c0cdd765f114000L, 0xa5880a69fb6ac800L, 0x8eea0d047a457a00L, 0x72a4904598d6d880L, 0x47a6da2b7f864750L, 0x999090b65f67d924L, 0xfff4b4e3f741cf6dL, 0xbff8f10e7a8921a4L, 0xaff72d52192b6a0dL, 0x9bf4f8a69f764490L, 0x2f236d04753d5b4L, 0x1d762422c946590L, 0x424d3ad2b7b97ef5L, 0xd2e0898765a7deb2L, 0x63cc55f49f88eb2fL, 0x3cbf6b71c76b25fbL, 0x8bef464e3945ef7aL, 0x97758bf0e3cbb5acL, 0x3d52eeed1cbea317L, 0x4ca7aaa863ee4bddL, 0x8fe8caa93e74ef6aL, 0xb3e2fd538e122b44L, 0x60dbbca87196b616L, 0xbc8955e946fe31cdL, 0x6babab6398bdbe41L, 0xc696963c7eed2dd1L, 0xfc1e1de5cf543ca2L, 0x3b25a55f43294bcbL, 0x49ef0eb713f39ebeL, 0x6e3569326c784337L, 0x49c2c37f07965404L, 0xdc33745ec97be906L, 0x69a028bb3ded71a3L, 0xc40832ea0d68ce0cL, 0xf50a3fa490c30190L, 0x792667c6da79e0faL, 0x577001b891185938L, 0xed4c0226b55e6f86L, 0x544f8158315b05b4L, 0x696361ae3db1c721L, 0x3bc3a19cd1e38e9L, 0x4ab48a04065c723L, 0x62eb0d64283f9c76L, 0x3ba5d0bd324f8394L, 0xca8f44ec7ee36479L, 0x7e998b13cf4e1ecbL, 0x9e3fedd8c321a67eL, 0xc5cfe94ef3ea101eL, 0xbba1f1d158724a12L, 0x2a8a6e45ae8edc97L, 0xf52d09d71a3293bdL, 0x593c2626705f9c56L, 0x6f8b2fb00c77836cL, 0xb6dfb9c0f956447L, 0x4724bd4189bd5eacL, 0x58edec91ec2cb657L, 0x2f2967b66737e3edL, 0xbd79e0d20082ee74L, 0xecd8590680a3aa11L, 0xe80e6f4820cc9495L, 0x3109058d147fdcddL, 0xbd4b46f0599fd415L, 0x6c9e18ac7007c91aL, 0x3e2cf6bc604ddb0L, 0x84db8346b786151cL, 0xe612641865679a63L, 0x4fcb7e8f3f60c07eL, 0xe3be5e330f38f09dL, 0x5cadf5bfd3072cc5L, 0x73d9732fc7c8f7f6L, 0x2867e7fddcdd9afaL, 0xb281e1fd541501b8L, 0x1f225a7ca91a4226L, 0x3375788de9b06958L, 0x52d6b1641c83aeL, 0xc0678c5dbd23a49aL, 0xf840b7ba963646e0L, 0xb650e5a93bc3d898L, 0xa3e51f138ab4cebeL, 0xc66f336c36b10137L, 0xb80b0047445d4184L, 0xa60dc059157491e5L, 0x87c89837ad68db2fL, 0x29babe4598c311fbL, 0xf4296dd6fef3d67aL, 0x1899e4a65f58660cL, 0x5ec05dcff72e7f8fL, 0x76707543f4fa1f73L, 0x6a06494a791c53a8L, 0x487db9d17636892L, 0x45a9d2845d3c42b6L, 0xb8a2392ba45a9b2L, 0x8e6cac7768d7141eL, 0x3207d795430cd926L, 0x7f44e6bd49e807b8L, 0x5f16206c9c6209a6L, 0x36dba887c37a8c0fL, 0xc2494954da2c9789L, 0xf2db9baa10b7bd6cL, 0x6f92829494e5acc7L, 0xcb772339ba1f17f9L, 0xff2a760414536efbL, 0xfef5138519684abaL, 0x7eb258665fc25d69L, 0xef2f773ffbd97a61L, 0xaafb550ffacfd8faL, 0x95ba2a53f983cf38L, 0xdd945a747bf26183L, 0x94f971119aeef9e4L, 0x7a37cd5601aab85dL, 0xac62e055c10ab33aL, 0x577b986b314d6009L, 0xed5a7e85fda0b80bL, 0x14588f13be847307L, 0x596eb2d8ae258fc8L, 0x6fca5f8ed9aef3bbL, 0x25de7bb9480d5854L, 0xaf561aa79a10ae6aL, 0x1b2ba1518094da04L, 0x90fb44d2f05d0842L, 0x353a1607ac744a53L, 0x42889b8997915ce8L, 0x69956135febada11L, 0x43fab9837e699095L, 0x94f967e45e03f4bbL, 0x1d1be0eebac278f5L, 0x6462d92a69731732L, 0x7d7b8f7503cfdcfeL, 0x5cda735244c3d43eL, 0x3a0888136afa64a7L, 0x88aaa1845b8fdd0L, 0x8aad549e57273d45L, 0x36ac54e2f678864bL, 0x84576a1bb416a7ddL, 0x656d44a2a11c51d5L, 0x9f644ae5a4b1b325L, 0x873d5d9f0dde1feeL, 0xa90cb506d155a7eaL, 0x9a7f12442d588f2L, 0xc11ed6d538aeb2fL, 0x8f1668c8a86da5faL, 0xf96e017d694487bcL, 0x37c981dcc395a9acL, 0x85bbe253f47b1417L, 0x93956d7478ccec8eL, 0x387ac8d1970027b2L, 0x6997b05fcc0319eL, 0x441fece3bdf81f03L, 0xd527e81cad7626c3L, 0x8a71e223d8d3b074L, 0xf6872d5667844e49L, 0xb428f8ac016561dbL, 0xe13336d701beba52L, 0xecc0024661173473L, 0x27f002d7f95d0190L, 0x31ec038df7b441f4L, 0x7e67047175a15271L, 0xf0062c6e984d386L, 0x52c07b78a3e60868L, 0xa7709a56ccdf8a82L, 0x88a66076400bb691L, 0x6acff893d00ea435L, 0x583f6b8c4124d43L, 0xc3727a337a8b704aL, 0x744f18c0592e4c5cL, 0x1162def06f79df73L, 0x8addcb5645ac2ba8L, 0x6d953e2bd7173692L, 0xc8fa8db6ccdd0437L, 0x1d9c9892400a22a2L, 0x2503beb6d00cab4bL, 0x2e44ae64840fd61dL, 0x5ceaecfed289e5d2L, 0x7425a83e872c5f47L, 0xd12f124e28f77719L, 0x82bd6b70d99aaa6fL, 0x636cc64d1001550bL, 0x3c47f7e05401aa4eL, 0x65acfaec34810a71L, 0x7f1839a741a14d0dL, 0x1ede48111209a050L, 0x934aed0aab460432L, 0xf81da84d5617853fL, 0x36251260ab9d668eL, 0xc1d72b7c6b426019L, 0xb24cf65b8612f81fL, 0xdee033f26797b627L, 0x169840ef017da3b1L, 0x8e1f289560ee864eL, 0xf1a6f2bab92a27e2L, 0xae10af696774b1dbL, 0xacca6da1e0a8ef29L, 0x17fd090a58d32af3L, 0xddfc4b4cef07f5b0L, 0x4abdaf101564f98eL, 0x9d6d1ad41abe37f1L, 0x84c86189216dc5edL, 0x32fd3cf5b4e49bb4L, 0x3fbc8c33221dc2a1L, 0xfabaf3feaa5334aL, 0x29cb4d87f2a7400eL, 0x743e20e9ef511012L, 0x914da9246b255416L, 0x1ad089b6c2f7548eL, 0xa184ac2473b529b1L, 0xc9e5d72d90a2741eL, 0x7e2fa67c7a658892L, 0xddbb901b98feeab7L, 0x552a74227f3ea565L, 0xd53a88958f87275fL, 0x8a892abaf368f137L, 0x2d2b7569b0432d85L, 0x9c3b29620e29fc73L, 0x8349f3ba91b47b8fL, 0x241c70a936219a73L, 0xed238cd383aa0110L, 0xf4363804324a40aaL, 0xb143c6053edcd0d5L, 0xdd94b7868e94050aL, 0xca7cf2b4191c8326L, 0xfd1c2f611f63a3f0L, 0xbc633b39673c8cecL, 0xd5be0503e085d813L, 0x4b2d8644d8a74e18L, 0xddf8e7d60ed1219eL, 0xcabb90e5c942b503L, 0x3d6a751f3b936243L, 0xcc512670a783ad4L, 0x27fb2b80668b24c5L, 0xb1f9f660802dedf6L, 0x5e7873f8a0396973L, 0xdb0b487b6423e1e8L, 0x91ce1a9a3d2cda62L, 0x7641a140cc7810fbL, 0xa9e904c87fcb0a9dL, 0x546345fa9fbdcd44L, 0xa97c177947ad4095L, 0x49ed8eabcccc485dL, 0x5c68f256bfff5a74L, 0x73832eec6fff3111L, 0xc831fd53c5ff7eabL, 0xba3e7ca8b77f5e55L, 0x28ce1bd2e55f35ebL, 0x7980d163cf5b81b3L, 0xd7e105bcc332621fL, 0x8dd9472bf3fefaa7L, 0xb14f98f6f0feb951L, 0x6ed1bf9a569f33d3L, 0xa862f80ec4700c8L, 0xcd27bb612758c0faL, 0x8038d51cb897789cL, 0xe0470a63e6bd56c3L, 0x1858ccfce06cac74L, 0xf37801e0c43ebc8L, 0xd30560258f54e6baL, 0x47c6b82ef32a2069L, 0x4cdc331d57fa5441L, 0xe0133fe4adf8e952L, 0x58180fddd97723a6L, 0x570f09eaa7ea7648L}; /** * Prevents instantiation. */ private FastDoubleMath() { } static double decFloatLiteralToDouble(int index, boolean isNegative, long digits, int exponent, int virtualIndexOfPoint, long expNumber, boolean isDigitsTruncated, int skipCountInTruncatedDigits) { if (digits == 0) { return isNegative ? -0.0 : 0.0; } final double outDouble; if (isDigitsTruncated) { final long exponentOfTruncatedDigits = virtualIndexOfPoint - index + skipCountInTruncatedDigits + expNumber; // We have too many digits. We may have to round up. // To know whether rounding up is needed, we may have to examine up to 768 digits. // There are cases, in which rounding has no effect. if (FASTFLOAT_DEC_SMALLEST_POWER <= exponentOfTruncatedDigits && exponentOfTruncatedDigits <= FASTFLOAT_DEC_LARGEST_POWER) { double withoutRounding = tryDecToDoubleWithFastAlgorithm(isNegative, digits, (int) exponentOfTruncatedDigits); double roundedUp = tryDecToDoubleWithFastAlgorithm(isNegative, digits + 1, (int) exponentOfTruncatedDigits); if (!Double.isNaN(withoutRounding) && doubleEquals(roundedUp, withoutRounding)) { return withoutRounding; } } // We have to take a slow path. // return Double.parseDouble(str.toString()); outDouble = Double.NaN; } else if (FASTFLOAT_DEC_SMALLEST_POWER <= exponent && exponent <= FASTFLOAT_DEC_LARGEST_POWER) { outDouble = tryDecToDoubleWithFastAlgorithm(isNegative, digits, exponent); } else { outDouble = Double.NaN; } return outDouble; } /** * Computes {@code uint128 product = (uint64)x * (uint64)y}. *

* References: *

*
Getting the high part of 64 bit integer multiplication
*
* stackoverflow
*
* * @param x uint64 factor x * @param y uint64 factor y * @return uint128 product of x and y */ private static Value128 fullMultiplication(long x, long y) { long x0 = x & 0xffffffffL; long x1 = x >>> 32; long y0 = y & 0xffffffffL; long y1 = y >>> 32; long p11 = x1 * y1; long p01 = x0 * y1; long p10 = x1 * y0; long p00 = x0 * y0; // 64-bit product + two 32-bit values long middle = p10 + (p00 >>> 32) + (p01 & 0xffffffffL); return new Value128( // 64-bit product + two 32-bit values p11 + (middle >>> 32) + (p01 >>> 32), // Add LOW PART and lower half of MIDDLE PART (middle << 32) | (p00 & 0xffffffffL)); } private static double hexFloatLiteralToDouble(int index, boolean isNegative, long digits, long exponent, int virtualIndexOfPoint, long expNumber, boolean isDigitsTruncated, int skipCountInTruncatedDigits) { if (digits == 0) { return isNegative ? -0.0 : 0.0; } final double outDouble; if (isDigitsTruncated) { final long truncatedExponent = (virtualIndexOfPoint - index + skipCountInTruncatedDigits) * 4L + expNumber; // We have too many digits. We may have to round up. // To know whether rounding up is needed, we may have to examine up to 768 digits. // There are cases, in which rounding has no effect. if (FASTFLOAT_HEX_SMALLEST_POWER <= truncatedExponent && truncatedExponent <= FASTFLOAT_HEX_LARGEST_POWER) { double withoutRounding = tryHexToDoubleWithFastAlgorithm(isNegative, digits, (int) truncatedExponent); double roundedUp = tryHexToDoubleWithFastAlgorithm(isNegative, digits + 1, (int) truncatedExponent); if (!Double.isNaN(withoutRounding) && doubleEquals(withoutRounding, roundedUp)) { return withoutRounding; } } // We have to take a slow path. outDouble = Double.NaN; } else if (FASTFLOAT_HEX_SMALLEST_POWER <= exponent && exponent <= FASTFLOAT_HEX_LARGEST_POWER) { outDouble = tryHexToDoubleWithFastAlgorithm(isNegative, digits, (int) exponent); } else { outDouble = Double.NaN; } return outDouble; } /** * Attempts to compute {@literal digits * 10^(power)} exactly; and if "negative" is true, * negate the result. *

* This function will only work in some cases, when it does not work it returns null. This * should work *most of the time* (like 99% of the time). We assume that power is in the * [FASTFLOAT_SMALLEST_POWER, FASTFLOAT_LARGEST_POWER] interval: the caller is responsible * for this check. * * @param isNegative whether the number is negative * @param curDigits uint64 the digits of the number * @param power int32 the exponent of the number * @return the computed double on success, {@link Double#NaN} on failure */ private static double tryDecToDoubleWithFastAlgorithm(boolean isNegative, long curDigits, int power) { long digits = curDigits; if (digits == 0 || power < -380 - 19) { return isNegative ? -0.0 : 0.0; } if (power > 380) { return isNegative ? Double.NEGATIVE_INFINITY : Double.POSITIVE_INFINITY; } // we start with a fast path // It was described in // Clinger WD. How to read floating point numbers accurately. // ACM SIGPLAN Notices. 1990 if (-22 <= power && power <= 22 && Long.compareUnsigned(digits, 0x1fffffffffffffL) <= 0) { // convert the integer into a double. This is lossless since // 0 <= i <= 2^53 - 1. double d = digits; // // The general idea is as follows. // If 0 <= s < 2^53 and if 10^0 <= p <= 10^22 then // 1) Both s and p can be represented exactly as 64-bit floating-point // values (binary64). // 2) Because s and p can be represented exactly as floating-point values, // then s * p and s / p will produce correctly rounded values. // if (power < 0) { d = d / powerOfTen[-power]; } else { d = d * powerOfTen[power]; } return (isNegative) ? -d : d; } // The fast path has now failed, so we are falling back on the slower path. // We are going to need to do some 64-bit arithmetic to get a more precise product. // We use a table lookup approach. // It is safe because // power >= FASTFLOAT_SMALLEST_POWER // and power <= FASTFLOAT_LARGEST_POWER // We recover the mantissa of the power, it has a leading 1. It is always // rounded down. long factorMantissa = MANTISSA_64[power - FASTFLOAT_DEC_SMALLEST_POWER]; // The exponent is 1024 + 63 + power // + floor(log(5**power)/log(2)). // The 1024 comes from the ieee64 standard. // The 63 comes from the fact that we use a 64-bit word. // // Computing floor(log(5**power)/log(2)) could be // slow. Instead we use a fast function. // // For power in (-400,350), we have that // (((152170 + 65536) * power ) >> 16); // is equal to // floor(log(5**power)/log(2)) + power when power >= 0 // and it is equal to // ceil(log(5**-power)/log(2)) + power when power < 0 // // // The 65536 is (1<<16) and corresponds to // (65536 * power) >> 16 ---> power // // ((152170 * power ) >> 16) is equal to // floor(log(5**power)/log(2)) // // Note that this is not magic: 152170/(1<<16) is // approximately equal to log(5)/log(2). // The 1<<16 value is a power of two; we could use a // larger power of 2 if we wanted to. // long exponent = (((152170 + 65536) * power) >> 16) + 1024 + 63; // We want the most significant bit of digits to be 1. Shift if needed. int lz = Long.numberOfLeadingZeros(digits); digits <<= lz; // We want the most significant 64 bits of the product. We know // this will be non-zero because the most significant bit of i is // 1. Value128 product = fullMultiplication(digits, factorMantissa); long lower = product.low; long upper = product.high; // We know that upper has at most one leading zero because // both i and factor_mantissa have a leading one. This means // that the result is at least as large as ((1<<63)*(1<<63))/(1<<64). // As long as the first 9 bits of "upper" are not "1", then we // know that we have an exact computed value for the leading // 55 bits because any imprecision would play out as a +1, in // the worst case. // Having 55 bits is necessary because // we need 53 bits for the mantissa but we have to have one rounding bit and // we can waste a bit if the most significant bit of the product is zero. // We expect this next branch to be rarely taken (say 1% of the time). // When (upper & 0x1FF) == 0x1FF, it can be common for // lower + i < lower to be true (proba. much higher than 1%). if ((upper & 0x1FF) == 0x1FF && Long.compareUnsigned(lower + digits, lower) < 0) { long factorMantissaLow = MANTISSA_128[power - FASTFLOAT_DEC_SMALLEST_POWER]; // next, we compute the 64-bit x 128-bit multiplication, getting a 192-bit // result (three 64-bit values) product = fullMultiplication(digits, factorMantissaLow); long productLow = product.low; long productMiddle2 = product.high; long productMiddle1 = lower; long productHigh = upper; long productMiddle = productMiddle1 + productMiddle2; if (Long.compareUnsigned(productMiddle, productMiddle1) < 0) { productHigh++; // overflow carry } // we want to check whether mantissa *i + i would affect our result // This does happen, e.g. with 7.3177701707893310e+15 if (((productMiddle + 1 == 0) && ((productHigh & 0x1ff) == 0x1ff) && (productLow + Long.compareUnsigned(digits, productLow) < 0))) { // let us be prudent and bail out. return Double.NaN; } upper = productHigh; // lower = product_middle; } // The final mantissa should be 53 bits with a leading 1. // We shift it so that it occupies 54 bits with a leading 1. long upperbit = upper >>> 63; long mantissa = upper >>> (upperbit + 9); lz += (int) (1 ^ upperbit); // Here we have mantissa < (1<<54). // We have to round to even. The "to even" part // is only a problem when we are right in between two floats // which we guard against. // If we have lots of trailing zeros, we may fall right between two // floating-point values. if (((upper & 0x1ff) == 0x1ff) || ((upper & 0x1ff) == 0) && (mantissa & 3) == 1) { // if mantissa & 1 == 1 we might need to round up. // // Scenarios: // 1. We are not in the middle. Then we should round up. // // 2. We are right in the middle. Whether we round up depends // on the last significant bit: if it is "one" then we round // up (round to even) otherwise, we do not. // // So if the last significant bit is 1, we can safely round up. // Hence we only need to bail out if (mantissa & 3) == 1. // Otherwise we may need more accuracy or analysis to determine whether // we are exactly between two floating-point numbers. // It can be triggered with 1e23. // Note: because the factor_mantissa and factor_mantissa_low are // almost always rounded down (except for small positive powers), // almost always should round up. return Double.NaN; } mantissa += 1; mantissa >>>= 1; // Here we have mantissa < (1<<53), unless there was an overflow if (mantissa >= (1L << 53)) { // This will happen when parsing values such as 7.2057594037927933e+16 mantissa = (1L << 52); lz--; // undo previous addition } mantissa &= ~(1L << 52); long realExponent = exponent - lz; // we have to check that real_exponent is in range, otherwise we bail out if ((realExponent < 1) || (realExponent > 2046)) { return Double.NaN; } long bits = mantissa | realExponent << 52 | (isNegative ? 1L << 63 : 0L); return Double.longBitsToDouble(bits); } /** * Attempts to compute {@literal digits * 2^(power)} exactly; and if "negative" is true, * negate the result. *

* This function will only work in some cases, when it does not work it returns null. * * @param isNegative whether the number is negative * @param digits uint64 the digits of the number * @param power int32 the exponent of the number * @return the computed double on success, null on failure */ private static double tryHexToDoubleWithFastAlgorithm(boolean isNegative, long digits, int power) { if (digits == 0 || power < Double.MIN_EXPONENT - 54) { return isNegative ? -0.0 : 0.0; } if (power > Double.MAX_EXPONENT) { return isNegative ? Double.NEGATIVE_INFINITY : Double.POSITIVE_INFINITY; } // we start with a fast path // We try to mimic the fast described by Clinger WD for decimal // float number literals. How to read floating point numbers accurately. // ACM SIGPLAN Notices. 1990 if (Long.compareUnsigned(digits, 0x1fffffffffffffL) <= 0) { // convert the integer into a double. This is lossless since // 0 <= i <= 2^53 - 1. double d = digits; // // The general idea is as follows. // If 0 <= s < 2^53 then // 1) Both s and p can be represented exactly as 64-bit floating-point // values (binary64). // 2) Because s and p can be represented exactly as floating-point values, // then s * p will produce correctly rounded values. // d = d * Math.scalb(1d, power); if (isNegative) { d = -d; } return d; } // The fast path has failed return Double.NaN; } private static boolean doubleEquals(double withoutRounding, double roundedUp) { return Double.doubleToLongBits(roundedUp) == Double.doubleToLongBits(withoutRounding); } private static final class Value128 { final long high; final long low; private Value128(long high, long low) { this.high = high; this.low = low; } } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy