All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.hibernate.internal.util.collections.ConcurrentReferenceHashMap Maven / Gradle / Ivy

/*
 * Hibernate, Relational Persistence for Idiomatic Java
 *
 * License: GNU Lesser General Public License (LGPL), version 2.1 or later.
 * See the lgpl.txt file in the root directory or .
 */

/*
 * Written by Doug Lea with assistance from members of JCP JSR-166
 * Expert Group and released to the public domain, as explained at
 * http://creativecommons.org/licenses/publicdomain
 */

package org.hibernate.internal.util.collections;

import java.io.IOException;
import java.io.Serializable;
import java.lang.ref.Reference;
import java.lang.ref.ReferenceQueue;
import java.lang.ref.SoftReference;
import java.lang.ref.WeakReference;
import java.util.AbstractCollection;
import java.util.AbstractMap;
import java.util.AbstractSet;
import java.util.Collection;
import java.util.EnumSet;
import java.util.Enumeration;
import java.util.Iterator;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Set;
import java.util.concurrent.locks.ReentrantLock;

/**
 * An advanced hash table supporting configurable garbage collection semantics
 * of keys and values, optional referential-equality, full concurrency of
 * retrievals, and adjustable expected concurrency for updates.
 * 

* This table is designed around specific advanced use-cases. If there is any * doubt whether this table is for you, you most likely should be using * {@link java.util.concurrent.ConcurrentHashMap} instead. *

* This table supports strong, weak, and soft keys and values. By default keys * are weak, and values are strong. Such a configuration offers similar behavior * to {@link java.util.WeakHashMap}, entries of this table are periodically * removed once their corresponding keys are no longer referenced outside of * this table. In other words, this table will not prevent a key from being * discarded by the garbage collector. Once a key has been discarded by the * collector, the corresponding entry is no longer visible to this table; * however, the entry may occupy space until a future table operation decides to * reclaim it. For this reason, summary functions such as size and * isEmpty might return a value greater than the observed number of * entries. In order to support a high level of concurrency, stale entries are * only reclaimed during blocking (usually mutating) operations. *

* Enabling soft keys allows entries in this table to remain until their space * is absolutely needed by the garbage collector. This is unlike weak keys which * can be reclaimed as soon as they are no longer referenced by a normal strong * reference. The primary use case for soft keys is a cache, which ideally * occupies memory that is not in use for as long as possible. *

* By default, values are held using a normal strong reference. This provides * the commonly desired guarantee that a value will always have at least the * same life-span as it's key. For this reason, care should be taken to ensure * that a value never refers, either directly or indirectly, to its key, thereby * preventing reclamation. If this is unavoidable, then it is recommended to use * the same reference type in use for the key. However, it should be noted that * non-strong values may disappear before their corresponding key. *

* While this table does allow the use of both strong keys and values, it is * recommended to use {@link java.util.concurrent.ConcurrentHashMap} for such a * configuration, since it is optimized for that case. *

* Just like {@link java.util.concurrent.ConcurrentHashMap}, this class obeys * the same functional specification as {@link java.util.Hashtable}, and * includes versions of methods corresponding to each method of * Hashtable. However, even though all operations are thread-safe, * retrieval operations do not entail locking, and there is * not any support for locking the entire table in a way that * prevents all access. This class is fully interoperable with * Hashtable in programs that rely on its thread safety but not on * its synchronization details. *

*

* Retrieval operations (including get) generally do not block, so * may overlap with update operations (including put and * remove). Retrievals reflect the results of the most recently * completed update operations holding upon their onset. For * aggregate operations such as putAll and clear, * concurrent retrievals may reflect insertion or removal of only some entries. * Similarly, Iterators and Enumerations return elements reflecting the state of * the hash table at some point at or since the creation of the * iterator/enumeration. They do not throw * {@link java.util.ConcurrentModificationException}. However, iterators are designed to * be used by only one thread at a time. *

*

* The allowed concurrency among update operations is guided by the optional * concurrencyLevel constructor argument (default 16), * which is used as a hint for internal sizing. The table is internally * partitioned to try to permit the indicated number of concurrent updates * without contention. Because placement in hash tables is essentially random, * the actual concurrency will vary. Ideally, you should choose a value to * accommodate as many threads as will ever concurrently modify the table. Using * a significantly higher value than you need can waste space and time, and a * significantly lower value can lead to thread contention. But overestimates * and underestimates within an order of magnitude do not usually have much * noticeable impact. A value of one is appropriate when it is known that only * one thread will modify and all others will only read. Also, resizing this or * any other kind of hash table is a relatively slow operation, so, when * possible, it is a good idea to provide estimates of expected table sizes in * constructors. *

*

* This class and its views and iterators implement all of the optional * methods of the {@link Map} and {@link Iterator} interfaces. *

*

* Like {@link java.util.Hashtable} but unlike {@link java.util.HashMap}, this class does * not allow null to be used as a key or value. *

*

* This class is a member of the * Java Collections Framework. * * @param the type of keys maintained by this map * @param the type of mapped values * * @author Doug Lea * @author Jason T. Greene */ public class ConcurrentReferenceHashMap extends AbstractMap implements java.util.concurrent.ConcurrentMap, Serializable { private static final long serialVersionUID = 7249069246763182397L; /* * The basic strategy is to subdivide the table among Segments, * each of which itself is a concurrently readable hash table. */ /** * An option specifying which Java reference type should be used to refer * to a key and/or value. */ public static enum ReferenceType { /** * Indicates a normal Java strong reference should be used */ STRONG, /** * Indicates a {@link WeakReference} should be used */ WEAK, /** * Indicates a {@link SoftReference} should be used */ SOFT } ; public static enum Option { /** * Indicates that referential-equality (== instead of .equals()) should * be used when locating keys. This offers similar behavior to {@link java.util.IdentityHashMap} */ IDENTITY_COMPARISONS } ; /* ---------------- Constants -------------- */ static final ReferenceType DEFAULT_KEY_TYPE = ReferenceType.WEAK; static final ReferenceType DEFAULT_VALUE_TYPE = ReferenceType.STRONG; /** * The default initial capacity for this table, * used when not otherwise specified in a constructor. */ static final int DEFAULT_INITIAL_CAPACITY = 16; /** * The default load factor for this table, used when not * otherwise specified in a constructor. */ static final float DEFAULT_LOAD_FACTOR = 0.75f; /** * The default concurrency level for this table, used when not * otherwise specified in a constructor. */ static final int DEFAULT_CONCURRENCY_LEVEL = 16; /** * The maximum capacity, used if a higher value is implicitly * specified by either of the constructors with arguments. MUST * be a power of two <= 1<<30 to ensure that entries are indexable * using ints. */ static final int MAXIMUM_CAPACITY = 1 << 30; /** * The maximum number of segments to allow; used to bound * constructor arguments. */ static final int MAX_SEGMENTS = 1 << 16; // slightly conservative /** * Number of unsynchronized retries in size and containsValue * methods before resorting to locking. This is used to avoid * unbounded retries if tables undergo continuous modification * which would make it impossible to obtain an accurate result. */ static final int RETRIES_BEFORE_LOCK = 2; /* ---------------- Fields -------------- */ /** * Mask value for indexing into segments. The upper bits of a * key's hash code are used to choose the segment. */ final int segmentMask; /** * Shift value for indexing within segments. */ final int segmentShift; /** * The segments, each of which is a specialized hash table */ final Segment[] segments; boolean identityComparisons; transient Set keySet; transient Set> entrySet; transient Collection values; /* ---------------- Small Utilities -------------- */ /** * Applies a supplemental hash function to a given hashCode, which * defends against poor quality hash functions. This is critical * because ConcurrentReferenceHashMap uses power-of-two length hash tables, * that otherwise encounter collisions for hashCodes that do not * differ in lower or upper bits. */ private static int hash(int h) { // Spread bits to regularize both segment and index locations, // using variant of single-word Wang/Jenkins hash. h += ( h << 15 ) ^ 0xffffcd7d; h ^= ( h >>> 10 ); h += ( h << 3 ); h ^= ( h >>> 6 ); h += ( h << 2 ) + ( h << 14 ); return h ^ ( h >>> 16 ); } /** * Returns the segment that should be used for key with given hash * * @param hash the hash code for the key * * @return the segment */ final Segment segmentFor(int hash) { return segments[( hash >>> segmentShift ) & segmentMask]; } private int hashOf(Object key) { return hash( identityComparisons ? System.identityHashCode( key ) : key.hashCode() ); } /* ---------------- Inner Classes -------------- */ static interface KeyReference { int keyHash(); Object keyRef(); } /** * A weak-key reference which stores the key hash needed for reclamation. */ static final class WeakKeyReference extends WeakReference implements KeyReference { final int hash; WeakKeyReference(K key, int hash, ReferenceQueue refQueue) { super( key, refQueue ); this.hash = hash; } @Override public final int keyHash() { return hash; } @Override public final Object keyRef() { return this; } } /** * A soft-key reference which stores the key hash needed for reclamation. */ static final class SoftKeyReference extends SoftReference implements KeyReference { final int hash; SoftKeyReference(K key, int hash, ReferenceQueue refQueue) { super( key, refQueue ); this.hash = hash; } @Override public final int keyHash() { return hash; } @Override public final Object keyRef() { return this; } } static final class WeakValueReference extends WeakReference implements KeyReference { final Object keyRef; final int hash; WeakValueReference(V value, Object keyRef, int hash, ReferenceQueue refQueue) { super( value, refQueue ); this.keyRef = keyRef; this.hash = hash; } @Override public final int keyHash() { return hash; } @Override public final Object keyRef() { return keyRef; } } static final class SoftValueReference extends SoftReference implements KeyReference { final Object keyRef; final int hash; SoftValueReference(V value, Object keyRef, int hash, ReferenceQueue refQueue) { super( value, refQueue ); this.keyRef = keyRef; this.hash = hash; } @Override public final int keyHash() { return hash; } @Override public final Object keyRef() { return keyRef; } } /** * ConcurrentReferenceHashMap list entry. Note that this is never exported * out as a user-visible Map.Entry. *

* Because the value field is volatile, not final, it is legal wrt * the Java Memory Model for an unsynchronized reader to see null * instead of initial value when read via a data race. Although a * reordering leading to this is not likely to ever actually * occur, the Segment.readValueUnderLock method is used as a * backup in case a null (pre-initialized) value is ever seen in * an unsynchronized access method. */ static final class HashEntry { final Object keyRef; final int hash; volatile Object valueRef; final HashEntry next; HashEntry( K key, int hash, HashEntry next, V value, ReferenceType keyType, ReferenceType valueType, ReferenceQueue refQueue) { this.hash = hash; this.next = next; this.keyRef = newKeyReference( key, keyType, refQueue ); this.valueRef = newValueReference( value, valueType, refQueue ); } final Object newKeyReference( K key, ReferenceType keyType, ReferenceQueue refQueue) { if ( keyType == ReferenceType.WEAK ) { return new WeakKeyReference( key, hash, refQueue ); } if ( keyType == ReferenceType.SOFT ) { return new SoftKeyReference( key, hash, refQueue ); } return key; } final Object newValueReference( V value, ReferenceType valueType, ReferenceQueue refQueue) { if ( valueType == ReferenceType.WEAK ) { return new WeakValueReference( value, keyRef, hash, refQueue ); } if ( valueType == ReferenceType.SOFT ) { return new SoftValueReference( value, keyRef, hash, refQueue ); } return value; } @SuppressWarnings("unchecked") final K key() { if ( keyRef instanceof KeyReference ) { return ( (Reference) keyRef ).get(); } return (K) keyRef; } final V value() { return dereferenceValue( valueRef ); } @SuppressWarnings("unchecked") final V dereferenceValue(Object value) { if ( value instanceof KeyReference ) { return ( (Reference) value ).get(); } return (V) value; } final void setValue(V value, ReferenceType valueType, ReferenceQueue refQueue) { this.valueRef = newValueReference( value, valueType, refQueue ); } @SuppressWarnings("unchecked") static final HashEntry[] newArray(int i) { return new HashEntry[i]; } } /** * Segments are specialized versions of hash tables. This * subclasses from ReentrantLock opportunistically, just to * simplify some locking and avoid separate construction. */ static final class Segment extends ReentrantLock implements Serializable { /* * Segments maintain a table of entry lists that are ALWAYS * kept in a consistent state, so can be read without locking. * Next fields of nodes are immutable (final). All list * additions are performed at the front of each bin. This * makes it easy to check changes, and also fast to traverse. * When nodes would otherwise be changed, new nodes are * created to replace them. This works well for hash tables * since the bin lists tend to be short. (The average length * is less than two for the default load factor threshold.) * * Read operations can thus proceed without locking, but rely * on selected uses of volatiles to ensure that completed * write operations performed by other threads are * noticed. For most purposes, the "count" field, tracking the * number of elements, serves as that volatile variable * ensuring visibility. This is convenient because this field * needs to be read in many read operations anyway: * * - All (unsynchronized) read operations must first read the * "count" field, and should not look at table entries if * it is 0. * * - All (synchronized) write operations should write to * the "count" field after structurally changing any bin. * The operations must not take any action that could even * momentarily cause a concurrent read operation to see * inconsistent data. This is made easier by the nature of * the read operations in Map. For example, no operation * can reveal that the table has grown but the threshold * has not yet been updated, so there are no atomicity * requirements for this with respect to reads. * * As a guide, all critical volatile reads and writes to the * count field are marked in code comments. */ private static final long serialVersionUID = 2249069246763182397L; /** * The number of elements in this segment's region. */ transient volatile int count; /** * Number of updates that alter the size of the table. This is * used during bulk-read methods to make sure they see a * consistent snapshot: If modCounts change during a traversal * of segments computing size or checking containsValue, then * we might have an inconsistent view of state so (usually) * must retry. */ transient int modCount; /** * The table is rehashed when its size exceeds this threshold. * (The value of this field is always (int)(capacity * * loadFactor).) */ transient int threshold; /** * The per-segment table. */ transient volatile HashEntry[] table; /** * The load factor for the hash table. Even though this value * is same for all segments, it is replicated to avoid needing * links to outer object. * * @serial */ final float loadFactor; /** * The collected weak-key reference queue for this segment. * This should be (re)initialized whenever table is assigned, */ transient volatile ReferenceQueue refQueue; final ReferenceType keyType; final ReferenceType valueType; final boolean identityComparisons; Segment( int initialCapacity, float lf, ReferenceType keyType, ReferenceType valueType, boolean identityComparisons) { loadFactor = lf; this.keyType = keyType; this.valueType = valueType; this.identityComparisons = identityComparisons; setTable( HashEntry.newArray( initialCapacity ) ); } @SuppressWarnings("unchecked") static final Segment[] newArray(int i) { return new Segment[i]; } private boolean keyEq(Object src, Object dest) { return identityComparisons ? src == dest : src.equals( dest ); } /** * Sets table to new HashEntry array. * Call only while holding lock or in constructor. */ void setTable(HashEntry[] newTable) { threshold = (int) ( newTable.length * loadFactor ); table = newTable; refQueue = new ReferenceQueue(); } /** * Returns properly casted first entry of bin for given hash. */ HashEntry getFirst(int hash) { HashEntry[] tab = table; return tab[hash & ( tab.length - 1 )]; } HashEntry newHashEntry(K key, int hash, HashEntry next, V value) { return new HashEntry( key, hash, next, value, keyType, valueType, refQueue ); } /** * Reads value field of an entry under lock. Called if value * field ever appears to be null. This is possible only if a * compiler happens to reorder a HashEntry initialization with * its table assignment, which is legal under memory model * but is not known to ever occur. */ V readValueUnderLock(HashEntry e) { lock(); try { removeStale(); return e.value(); } finally { unlock(); } } /* Specialized implementations of map methods */ V get(Object key, int hash) { if ( count != 0 ) { // read-volatile HashEntry e = getFirst( hash ); while ( e != null ) { if ( e.hash == hash && keyEq( key, e.key() ) ) { Object opaque = e.valueRef; if ( opaque != null ) { return e.dereferenceValue( opaque ); } return readValueUnderLock( e ); // recheck } e = e.next; } } return null; } boolean containsKey(Object key, int hash) { if ( count != 0 ) { // read-volatile HashEntry e = getFirst( hash ); while ( e != null ) { if ( e.hash == hash && keyEq( key, e.key() ) ) { return true; } e = e.next; } } return false; } boolean containsValue(Object value) { if ( count != 0 ) { // read-volatile HashEntry[] tab = table; int len = tab.length; for ( int i = 0; i < len; i++ ) { for ( HashEntry e = tab[i]; e != null; e = e.next ) { Object opaque = e.valueRef; V v; if ( opaque == null ) { v = readValueUnderLock( e ); // recheck } else { v = e.dereferenceValue( opaque ); } if ( value.equals( v ) ) { return true; } } } } return false; } boolean replace(K key, int hash, V oldValue, V newValue) { lock(); try { removeStale(); HashEntry e = getFirst( hash ); while ( e != null && ( e.hash != hash || !keyEq( key, e.key() ) ) ) { e = e.next; } boolean replaced = false; if ( e != null && oldValue.equals( e.value() ) ) { replaced = true; e.setValue( newValue, valueType, refQueue ); } return replaced; } finally { unlock(); } } V replace(K key, int hash, V newValue) { lock(); try { removeStale(); HashEntry e = getFirst( hash ); while ( e != null && ( e.hash != hash || !keyEq( key, e.key() ) ) ) { e = e.next; } V oldValue = null; if ( e != null ) { oldValue = e.value(); e.setValue( newValue, valueType, refQueue ); } return oldValue; } finally { unlock(); } } V put(K key, int hash, V value, boolean onlyIfAbsent) { lock(); try { removeStale(); int c = count; if ( c++ > threshold ) {// ensure capacity int reduced = rehash(); if ( reduced > 0 ) { // adjust from possible weak cleanups count = ( c -= reduced ) - 1; // write-volatile } } HashEntry[] tab = table; int index = hash & ( tab.length - 1 ); HashEntry first = tab[index]; HashEntry e = first; while ( e != null && ( e.hash != hash || !keyEq( key, e.key() ) ) ) { e = e.next; } V oldValue; if ( e != null ) { oldValue = e.value(); if ( !onlyIfAbsent ) { e.setValue( value, valueType, refQueue ); } } else { oldValue = null; ++modCount; tab[index] = newHashEntry( key, hash, first, value ); count = c; // write-volatile } return oldValue; } finally { unlock(); } } int rehash() { HashEntry[] oldTable = table; int oldCapacity = oldTable.length; if ( oldCapacity >= MAXIMUM_CAPACITY ) { return 0; } /* * Reclassify nodes in each list to new Map. Because we are * using power-of-two expansion, the elements from each bin * must either stay at same index, or move with a power of two * offset. We eliminate unnecessary node creation by catching * cases where old nodes can be reused because their next * fields won't change. Statistically, at the default * threshold, only about one-sixth of them need cloning when * a table doubles. The nodes they replace will be garbage * collectable as soon as they are no longer referenced by any * reader thread that may be in the midst of traversing table * right now. */ HashEntry[] newTable = HashEntry.newArray( oldCapacity << 1 ); threshold = (int) ( newTable.length * loadFactor ); int sizeMask = newTable.length - 1; int reduce = 0; for ( int i = 0; i < oldCapacity; i++ ) { // We need to guarantee that any existing reads of old Map can // proceed. So we cannot yet null out each bin. HashEntry e = oldTable[i]; if ( e != null ) { HashEntry next = e.next; int idx = e.hash & sizeMask; // Single node on list if ( next == null ) { newTable[idx] = e; } else { // Reuse trailing consecutive sequence at same slot HashEntry lastRun = e; int lastIdx = idx; for ( HashEntry last = next; last != null; last = last.next ) { int k = last.hash & sizeMask; if ( k != lastIdx ) { lastIdx = k; lastRun = last; } } newTable[lastIdx] = lastRun; // Clone all remaining nodes for ( HashEntry p = e; p != lastRun; p = p.next ) { // Skip GC'd weak refs K key = p.key(); if ( key == null ) { reduce++; continue; } int k = p.hash & sizeMask; HashEntry n = newTable[k]; newTable[k] = newHashEntry( key, p.hash, n, p.value() ); } } } } table = newTable; return reduce; } /** * Remove; match on key only if value null, else match both. */ V remove(Object key, int hash, Object value, boolean refRemove) { lock(); try { if ( !refRemove ) { removeStale(); } int c = count - 1; HashEntry[] tab = table; int index = hash & ( tab.length - 1 ); HashEntry first = tab[index]; HashEntry e = first; // a ref remove operation compares the Reference instance while ( e != null && key != e.keyRef && ( refRemove || hash != e.hash || !keyEq( key, e.key() ) ) ) { e = e.next; } V oldValue = null; if ( e != null ) { V v = e.value(); if ( value == null || value.equals( v ) ) { oldValue = v; // All entries following removed node can stay // in list, but all preceding ones need to be // cloned. ++modCount; HashEntry newFirst = e.next; for ( HashEntry p = first; p != e; p = p.next ) { K pKey = p.key(); if ( pKey == null ) { // Skip GC'd keys c--; continue; } newFirst = newHashEntry( pKey, p.hash, newFirst, p.value() ); } tab[index] = newFirst; count = c; // write-volatile } } return oldValue; } finally { unlock(); } } final void removeStale() { KeyReference ref; while ( ( ref = (KeyReference) refQueue.poll() ) != null ) { remove( ref.keyRef(), ref.keyHash(), null, true ); } } void clear() { if ( count != 0 ) { lock(); try { HashEntry[] tab = table; for ( int i = 0; i < tab.length; i++ ) { tab[i] = null; } ++modCount; // replace the reference queue to avoid unnecessary stale cleanups refQueue = new ReferenceQueue(); count = 0; // write-volatile } finally { unlock(); } } } } /* ---------------- Public operations -------------- */ /** * Creates a new, empty map with the specified initial * capacity, reference types, load factor and concurrency level. *

* Behavioral changing options such as {@link Option#IDENTITY_COMPARISONS} * can also be specified. * * @param initialCapacity the initial capacity. The implementation * performs internal sizing to accommodate this many elements. * @param loadFactor the load factor threshold, used to control resizing. * Resizing may be performed when the average number of elements per * bin exceeds this threshold. * @param concurrencyLevel the estimated number of concurrently * updating threads. The implementation performs internal sizing * to try to accommodate this many threads. * @param keyType the reference type to use for keys * @param valueType the reference type to use for values * @param options the behavioral options * * @throws IllegalArgumentException if the initial capacity is * negative or the load factor or concurrencyLevel are * nonpositive. */ public ConcurrentReferenceHashMap( int initialCapacity, float loadFactor, int concurrencyLevel, ReferenceType keyType, ReferenceType valueType, EnumSet

*

More formally, if this map contains a mapping from a key * {@code k} to a value {@code v} such that {@code key.equals(k)}, * then this method returns {@code v}; otherwise it returns * {@code null}. (There can be at most one such mapping.) * * @throws NullPointerException if the specified key is null */ @Override public V get(Object key) { if ( key == null ) { return null; } int hash = hashOf( key ); return segmentFor( hash ).get( key, hash ); } /** * Tests if the specified object is a key in this table. * * @param key possible key * * @return true if and only if the specified object * is a key in this table, as determined by the * equals method; false otherwise. * * @throws NullPointerException if the specified key is null */ @Override public boolean containsKey(Object key) { if ( key == null ) { return false; } int hash = hashOf( key ); return segmentFor( hash ).containsKey( key, hash ); } /** * Returns true if this map maps one or more keys to the * specified value. Note: This method requires a full internal * traversal of the hash table, and so is much slower than * method containsKey. * * @param value value whose presence in this map is to be tested * * @return true if this map maps one or more keys to the * specified value */ @Override public boolean containsValue(Object value) { if ( value == null ) { return false; } // See explanation of modCount use above final Segment[] segments = this.segments; int[] mc = new int[segments.length]; // Try a few times without locking for ( int k = 0; k < RETRIES_BEFORE_LOCK; ++k ) { int sum = 0; int mcsum = 0; for ( int i = 0; i < segments.length; ++i ) { int c = segments[i].count; mcsum += mc[i] = segments[i].modCount; if ( segments[i].containsValue( value ) ) { return true; } } boolean cleanSweep = true; if ( mcsum != 0 ) { for ( int i = 0; i < segments.length; ++i ) { int c = segments[i].count; if ( mc[i] != segments[i].modCount ) { cleanSweep = false; break; } } } if ( cleanSweep ) { return false; } } // Resort to locking all segments for ( int i = 0; i < segments.length; ++i ) { segments[i].lock(); } boolean found = false; try { for ( int i = 0; i < segments.length; ++i ) { if ( segments[i].containsValue( value ) ) { found = true; break; } } } finally { for ( int i = 0; i < segments.length; ++i ) { segments[i].unlock(); } } return found; } /** * Legacy method testing if some key maps into the specified value * in this table. This method is identical in functionality to * {@link #containsValue}, and exists solely to ensure * full compatibility with class {@link java.util.Hashtable}, * which supported this method prior to introduction of the * Java Collections framework. * * @param value a value to search for * * @return true if and only if some key maps to the * value argument in this table as * determined by the equals method; * false otherwise * * @throws NullPointerException if the specified value is null */ public boolean contains(Object value) { return containsValue( value ); } /** * Maps the specified key to the specified value in this table. * Neither the key nor the value can be null. *

*

The value can be retrieved by calling the get method * with a key that is equal to the original key. * * @param key key with which the specified value is to be associated * @param value value to be associated with the specified key * * @return the previous value associated with key, or * null if there was no mapping for key * * @throws NullPointerException if the specified key or value is null */ @Override public V put(K key, V value) { if ( key == null || value == null ) { return null; } int hash = hashOf( key ); return segmentFor( hash ).put( key, hash, value, false ); } /** * {@inheritDoc} * * @return the previous value associated with the specified key, * or null if there was no mapping for the key * * @throws NullPointerException if the specified key or value is null */ @Override public V putIfAbsent(K key, V value) { if ( key == null || value == null ) { return null; } int hash = hashOf( key ); return segmentFor( hash ).put( key, hash, value, true ); } /** * Copies all of the mappings from the specified map to this one. * These mappings replace any mappings that this map had for any of the * keys currently in the specified map. * * @param m mappings to be stored in this map */ @Override public void putAll(Map m) { for ( Map.Entry e : m.entrySet() ) { put( e.getKey(), e.getValue() ); } } /** * Removes the key (and its corresponding value) from this map. * This method does nothing if the key is not in the map. * * @param key the key that needs to be removed * * @return the previous value associated with key, or * null if there was no mapping for key * * @throws NullPointerException if the specified key is null */ @Override public V remove(Object key) { if ( key == null ) { return null; } int hash = hashOf( key ); return segmentFor( hash ).remove( key, hash, null, false ); } /** * {@inheritDoc} * * @throws NullPointerException if the specified key is null */ @Override public boolean remove(Object key, Object value) { if ( key == null || value == null ) { return false; } int hash = hashOf( key ); return segmentFor( hash ).remove( key, hash, value, false ) != null; } /** * {@inheritDoc} * * @throws NullPointerException if any of the arguments are null */ @Override public boolean replace(K key, V oldValue, V newValue) { if ( key == null || oldValue == null || newValue == null ) { throw new NullPointerException(); } int hash = hashOf( key ); return segmentFor( hash ).replace( key, hash, oldValue, newValue ); } /** * {@inheritDoc} * * @return the previous value associated with the specified key, * or null if there was no mapping for the key * * @throws NullPointerException if the specified key or value is null */ @Override public V replace(K key, V value) { if ( key == null || value == null ) { return null; } int hash = hashOf( key ); return segmentFor( hash ).replace( key, hash, value ); } /** * Removes all of the mappings from this map. */ @Override public void clear() { for ( int i = 0; i < segments.length; ++i ) { segments[i].clear(); } } /** * Removes any stale entries whose keys have been finalized. Use of this * method is normally not necessary since stale entries are automatically * removed lazily, when blocking operations are required. However, there * are some cases where this operation should be performed eagerly, such * as cleaning up old references to a ClassLoader in a multi-classloader * environment. *

* Note: this method will acquire locks, one at a time, across all segments * of this table, so if it is to be used, it should be used sparingly. */ public void purgeStaleEntries() { for ( int i = 0; i < segments.length; ++i ) { segments[i].removeStale(); } } /** * Returns a {@link Set} view of the keys contained in this map. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. The set supports element * removal, which removes the corresponding mapping from this map, * via the Iterator.remove, Set.remove, * removeAll, retainAll, and clear * operations. It does not support the add or * addAll operations. *

*

The view's iterator is a "weakly consistent" iterator * that will never throw {@link java.util.ConcurrentModificationException}, * and guarantees to traverse elements as they existed upon * construction of the iterator, and may (but is not guaranteed to) * reflect any modifications subsequent to construction. */ @Override public Set keySet() { Set ks = keySet; return ( ks != null ) ? ks : ( keySet = new KeySet() ); } /** * Returns a {@link Collection} view of the values contained in this map. * The collection is backed by the map, so changes to the map are * reflected in the collection, and vice-versa. The collection * supports element removal, which removes the corresponding * mapping from this map, via the Iterator.remove, * Collection.remove, removeAll, * retainAll, and clear operations. It does not * support the add or addAll operations. *

*

The view's iterator is a "weakly consistent" iterator * that will never throw {@link java.util.ConcurrentModificationException}, * and guarantees to traverse elements as they existed upon * construction of the iterator, and may (but is not guaranteed to) * reflect any modifications subsequent to construction. */ @Override public Collection values() { Collection vs = values; return ( vs != null ) ? vs : ( values = new Values() ); } /** * Returns a {@link Set} view of the mappings contained in this map. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. The set supports element * removal, which removes the corresponding mapping from the map, * via the Iterator.remove, Set.remove, * removeAll, retainAll, and clear * operations. It does not support the add or * addAll operations. *

*

The view's iterator is a "weakly consistent" iterator * that will never throw {@link java.util.ConcurrentModificationException}, * and guarantees to traverse elements as they existed upon * construction of the iterator, and may (but is not guaranteed to) * reflect any modifications subsequent to construction. */ @Override public Set> entrySet() { Set> es = entrySet; return ( es != null ) ? es : ( entrySet = new EntrySet() ); } /** * Returns an enumeration of the keys in this table. * * @return an enumeration of the keys in this table * * @see #keySet() */ public Enumeration keys() { return new KeyIterator(); } /** * Returns an enumeration of the values in this table. * * @return an enumeration of the values in this table * * @see #values() */ public Enumeration elements() { return new ValueIterator(); } /* ---------------- Iterator Support -------------- */ abstract class HashIterator { int nextSegmentIndex; int nextTableIndex; HashEntry[] currentTable; HashEntry nextEntry; HashEntry lastReturned; K currentKey; // Strong reference to weak key (prevents gc) HashIterator() { nextSegmentIndex = segments.length - 1; nextTableIndex = -1; advance(); } public boolean hasMoreElements() { return hasNext(); } final void advance() { if ( nextEntry != null && ( nextEntry = nextEntry.next ) != null ) { return; } while ( nextTableIndex >= 0 ) { if ( ( nextEntry = currentTable[nextTableIndex--] ) != null ) { return; } } while ( nextSegmentIndex >= 0 ) { Segment seg = segments[nextSegmentIndex--]; if ( seg.count != 0 ) { currentTable = seg.table; for ( int j = currentTable.length - 1; j >= 0; --j ) { if ( ( nextEntry = currentTable[j] ) != null ) { nextTableIndex = j - 1; return; } } } } } public boolean hasNext() { while ( nextEntry != null ) { if ( nextEntry.key() != null ) { return true; } advance(); } return false; } HashEntry nextEntry() { do { if ( nextEntry == null ) { throw new NoSuchElementException(); } lastReturned = nextEntry; currentKey = lastReturned.key(); advance(); } while ( currentKey == null ); // Skip GC'd keys return lastReturned; } public void remove() { if ( lastReturned == null ) { throw new IllegalStateException(); } ConcurrentReferenceHashMap.this.remove( currentKey ); lastReturned = null; } } final class KeyIterator extends HashIterator implements Iterator, Enumeration { @Override public K next() { return super.nextEntry().key(); } @Override public K nextElement() { return super.nextEntry().key(); } } final class ValueIterator extends HashIterator implements Iterator, Enumeration { @Override public V next() { return super.nextEntry().value(); } @Override public V nextElement() { return super.nextEntry().value(); } } /* * This class is needed for JDK5 compatibility. */ static class SimpleEntry implements Entry, java.io.Serializable { private static final long serialVersionUID = -8499721149061103585L; private final K key; private V value; public SimpleEntry(K key, V value) { this.key = key; this.value = value; } public SimpleEntry(Entry entry) { this.key = entry.getKey(); this.value = entry.getValue(); } @Override public K getKey() { return key; } @Override public V getValue() { return value; } @Override public V setValue(V value) { V oldValue = this.value; this.value = value; return oldValue; } @Override public boolean equals(Object o) { if ( !( o instanceof Map.Entry ) ) { return false; } @SuppressWarnings("unchecked") Map.Entry e = (Map.Entry) o; return eq( key, e.getKey() ) && eq( value, e.getValue() ); } @Override public int hashCode() { return ( key == null ? 0 : key.hashCode() ) ^ ( value == null ? 0 : value.hashCode() ); } @Override public String toString() { return key + "=" + value; } private static boolean eq(Object o1, Object o2) { return o1 == null ? o2 == null : o1.equals( o2 ); } } /** * Custom Entry class used by EntryIterator.next(), that relays setValue * changes to the underlying map. */ final class WriteThroughEntry extends SimpleEntry { private static final long serialVersionUID = -7900634345345313646L; WriteThroughEntry(K k, V v) { super( k, v ); } /** * Set our entry's value and write through to the map. The * value to return is somewhat arbitrary here. Since a * WriteThroughEntry does not necessarily track asynchronous * changes, the most recent "previous" value could be * different from what we return (or could even have been * removed in which case the put will re-establish). We do not * and cannot guarantee more. */ @Override public V setValue(V value) { if ( value == null ) { throw new NullPointerException(); } V v = super.setValue( value ); ConcurrentReferenceHashMap.this.put( getKey(), value ); return v; } } final class EntryIterator extends HashIterator implements Iterator> { @Override public Map.Entry next() { HashEntry e = super.nextEntry(); return new WriteThroughEntry( e.key(), e.value() ); } } final class KeySet extends AbstractSet { @Override public Iterator iterator() { return new KeyIterator(); } @Override public int size() { return ConcurrentReferenceHashMap.this.size(); } @Override public boolean isEmpty() { return ConcurrentReferenceHashMap.this.isEmpty(); } @Override public boolean contains(Object o) { return ConcurrentReferenceHashMap.this.containsKey( o ); } @Override public boolean remove(Object o) { return ConcurrentReferenceHashMap.this.remove( o ) != null; } @Override public void clear() { ConcurrentReferenceHashMap.this.clear(); } } final class Values extends AbstractCollection { @Override public Iterator iterator() { return new ValueIterator(); } @Override public int size() { return ConcurrentReferenceHashMap.this.size(); } @Override public boolean isEmpty() { return ConcurrentReferenceHashMap.this.isEmpty(); } @Override public boolean contains(Object o) { return ConcurrentReferenceHashMap.this.containsValue( o ); } @Override public void clear() { ConcurrentReferenceHashMap.this.clear(); } } final class EntrySet extends AbstractSet> { @Override public Iterator> iterator() { return new EntryIterator(); } @Override public boolean contains(Object o) { if ( !( o instanceof Map.Entry ) ) { return false; } Map.Entry e = (Map.Entry) o; V v = ConcurrentReferenceHashMap.this.get( e.getKey() ); return v != null && v.equals( e.getValue() ); } @Override public boolean remove(Object o) { if ( !( o instanceof Map.Entry ) ) { return false; } Map.Entry e = (Map.Entry) o; return ConcurrentReferenceHashMap.this.remove( e.getKey(), e.getValue() ); } @Override public int size() { return ConcurrentReferenceHashMap.this.size(); } @Override public boolean isEmpty() { return ConcurrentReferenceHashMap.this.isEmpty(); } @Override public void clear() { ConcurrentReferenceHashMap.this.clear(); } } /* ---------------- Serialization Support -------------- */ /** * Save the state of the ConcurrentReferenceHashMap instance to a * stream (i.e., serialize it). * * @param s the stream * * @serialData the key (Object) and value (Object) * for each key-value mapping, followed by a null pair. * The key-value mappings are emitted in no particular order. */ private void writeObject(java.io.ObjectOutputStream s) throws IOException { s.defaultWriteObject(); for ( int k = 0; k < segments.length; ++k ) { Segment seg = segments[k]; seg.lock(); try { HashEntry[] tab = seg.table; for ( int i = 0; i < tab.length; ++i ) { for ( HashEntry e = tab[i]; e != null; e = e.next ) { K key = e.key(); if ( key == null ) { // Skip GC'd keys continue; } s.writeObject( key ); s.writeObject( e.value() ); } } } finally { seg.unlock(); } } s.writeObject( null ); s.writeObject( null ); } /** * Reconstitute the ConcurrentReferenceHashMap instance from a * stream (i.e., deserialize it). * * @param s the stream */ @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s) throws IOException, ClassNotFoundException { s.defaultReadObject(); // Initialize each segment to be minimally sized, and let grow. for ( int i = 0; i < segments.length; ++i ) { segments[i].setTable( new HashEntry[1] ); } // Read the keys and values, and put the mappings in the table for (; ; ) { K key = (K) s.readObject(); V value = (V) s.readObject(); if ( key == null ) { break; } put( key, value ); } } }