All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.hipparchus.stat.descriptive.moment.Skewness Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.hipparchus.stat.descriptive.moment;

import java.io.Serializable;

import org.hipparchus.exception.MathIllegalArgumentException;
import org.hipparchus.exception.NullArgumentException;
import org.hipparchus.stat.descriptive.AbstractStorelessUnivariateStatistic;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.MathArrays;
import org.hipparchus.util.MathUtils;

/**
 * Computes the skewness of the available values.
 * 

* We use the following (unbiased) formula to define skewness: *

* skewness = [n / (n -1) (n - 2)] sum[(x_i - mean)^3] / std^3 *

* where n is the number of values, mean is the {@link Mean} and std is the * {@link StandardDeviation}. *

* Note that this statistic is undefined for n < 3. Double.Nan * is returned when there is not sufficient data to compute the statistic. * Double.NaN may also be returned if the input includes NaN and / or * infinite values. *

* Note that this implementation is not synchronized. If * multiple threads access an instance of this class concurrently, and at least * one of the threads invokes the increment() or * clear() method, it must be synchronized externally. */ public class Skewness extends AbstractStorelessUnivariateStatistic implements Serializable { /** Serializable version identifier */ private static final long serialVersionUID = 20150412L; /** Third moment on which this statistic is based */ protected final ThirdMoment moment; /** * Determines whether or not this statistic can be incremented or cleared. *

* Statistics based on (constructed from) external moments cannot * be incremented or cleared. */ protected final boolean incMoment; /** * Constructs a Skewness. */ public Skewness() { moment = new ThirdMoment(); incMoment = true; } /** * Constructs a Skewness with an external moment. * @param m3 external moment */ public Skewness(final ThirdMoment m3) { this.moment = m3; incMoment = false; } /** * Copy constructor, creates a new {@code Skewness} identical * to the {@code original}. * * @param original the {@code Skewness} instance to copy * @throws NullArgumentException if original is null */ public Skewness(Skewness original) throws NullArgumentException { MathUtils.checkNotNull(original); this.moment = original.moment.copy(); this.incMoment = original.incMoment; } /** * {@inheritDoc} *

Note that when {@link #Skewness(ThirdMoment)} is used to * create a Skewness, this method does nothing. In that case, the * ThirdMoment should be incremented directly. */ @Override public void increment(final double d) { if (incMoment) { moment.increment(d); } } /** * Returns the value of the statistic based on the values that have been added. *

* See {@link Skewness} for the definition used in the computation. * * @return the skewness of the available values. */ @Override public double getResult() { if (moment.n < 3) { return Double.NaN; } double variance = moment.m2 / (moment.n - 1); if (variance < 10E-20) { return 0.0d; } else { double n0 = moment.getN(); return (n0 * moment.m3) / ((n0 - 1) * (n0 -2) * FastMath.sqrt(variance) * variance); } } /** {@inheritDoc} */ @Override public long getN() { return moment.getN(); } /** {@inheritDoc} */ @Override public void clear() { if (incMoment) { moment.clear(); } } /** * Returns the Skewness of the entries in the specified portion of the * input array. *

* See {@link Skewness} for the definition used in the computation. *

* Throws IllegalArgumentException if the array is null. * * @param values the input array * @param begin the index of the first array element to include * @param length the number of elements to include * @return the skewness of the values or Double.NaN if length is less than 3 * @throws MathIllegalArgumentException if the array is null or the array index * parameters are not valid */ @Override public double evaluate(final double[] values, final int begin, final int length) throws MathIllegalArgumentException { // Initialize the skewness double skew = Double.NaN; if (MathArrays.verifyValues(values, begin, length) && length > 2 ) { Mean mean = new Mean(); // Get the mean and the standard deviation double m = mean.evaluate(values, begin, length); // Calc the std, this is implemented here instead // of using the standardDeviation method eliminate // a duplicate pass to get the mean double accum = 0.0; double accum2 = 0.0; for (int i = begin; i < begin + length; i++) { final double d = values[i] - m; accum += d * d; accum2 += d; } final double variance = (accum - (accum2 * accum2 / length)) / (length - 1); double accum3 = 0.0; for (int i = begin; i < begin + length; i++) { final double d = values[i] - m; accum3 += d * d * d; } accum3 /= variance * FastMath.sqrt(variance); // Get N double n0 = length; // Calculate skewness skew = (n0 / ((n0 - 1) * (n0 - 2))) * accum3; } return skew; } /** {@inheritDoc} */ @Override public Skewness copy() { return new Skewness(this); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy