All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.hipparchus.stat.inference.OneWayAnova Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.hipparchus.stat.inference;

import java.util.ArrayList;
import java.util.Collection;

import org.hipparchus.distribution.continuous.FDistribution;
import org.hipparchus.exception.LocalizedCoreFormats;
import org.hipparchus.exception.MathIllegalArgumentException;
import org.hipparchus.exception.MathIllegalStateException;
import org.hipparchus.exception.NullArgumentException;
import org.hipparchus.stat.descriptive.StreamingStatistics;
import org.hipparchus.util.MathUtils;

/**
 * Implements one-way ANOVA (analysis of variance) statistics.
 *
 * 

Tests for differences between two or more categories of univariate data * (for example, the body mass index of accountants, lawyers, doctors and * computer programmers). When two categories are given, this is equivalent to * the {@link org.hipparchus.stat.inference.TTest}. *

* Uses the {@link org.hipparchus.distribution.continuous.FDistribution * Hipparchus F Distribution implementation} to estimate exact p-values.

*

This implementation is based on a description at * http://faculty.vassar.edu/lowry/ch13pt1.html

*
 * Abbreviations: bg = between groups,
 *                wg = within groups,
 *                ss = sum squared deviations
 * 
* */ public class OneWayAnova { /** * Default constructor. */ public OneWayAnova() { } /** * Computes the ANOVA F-value for a collection of double[] * arrays. * *

Preconditions:

    *
  • The categoryData Collection must contain * double[] arrays.
  • *
  • There must be at least two double[] arrays in the * categoryData collection and each of these arrays must * contain at least two values.

* This implementation computes the F statistic using the definitional * formula

     *   F = msbg/mswg
* where
     *  msbg = between group mean square
     *  mswg = within group mean square
* are as defined * here

* * @param categoryData Collection of double[] * arrays each containing data for one category * @return Fvalue * @throws NullArgumentException if categoryData is null * @throws MathIllegalArgumentException if the length of the categoryData * array is less than 2 or a contained double[] array does not have * at least two values */ public double anovaFValue(final Collection categoryData) throws MathIllegalArgumentException, NullArgumentException { AnovaStats a = anovaStats(categoryData); return a.F; } /** * Computes the ANOVA P-value for a collection of double[] * arrays. * *

Preconditions:

    *
  • The categoryData Collection must contain * double[] arrays.
  • *
  • There must be at least two double[] arrays in the * categoryData collection and each of these arrays must * contain at least two values.

* This implementation uses the * {@link org.hipparchus.distribution.continuous.FDistribution * Hipparchus F Distribution implementation} to estimate the exact * p-value, using the formula

     *   p = 1 - cumulativeProbability(F)
* where F is the F value and cumulativeProbability * is the Hipparchus implementation of the F distribution.

* * @param categoryData Collection of double[] * arrays each containing data for one category * @return Pvalue * @throws NullArgumentException if categoryData is null * @throws MathIllegalArgumentException if the length of the categoryData * array is less than 2 or a contained double[] array does not have * at least two values * @throws MathIllegalStateException if the p-value can not be computed due to a convergence error * @throws MathIllegalStateException if the maximum number of iterations is exceeded */ public double anovaPValue(final Collection categoryData) throws MathIllegalArgumentException, NullArgumentException, MathIllegalStateException { final AnovaStats a = anovaStats(categoryData); // No try-catch or advertised exception because args are valid final FDistribution fdist = new FDistribution(a.dfbg, a.dfwg); return 1.0 - fdist.cumulativeProbability(a.F); } /** * Computes the ANOVA P-value for a collection of {@link StreamingStatistics}. * *

Preconditions:

    *
  • The categoryData Collection must contain * {@link StreamingStatistics}.
  • *
  • There must be at least two {@link StreamingStatistics} in the * categoryData collection and each of these statistics must * contain at least two values.

* This implementation uses the * {@link org.hipparchus.distribution.continuous.FDistribution * Hipparchus F Distribution implementation} to estimate the exact * p-value, using the formula

     *   p = 1 - cumulativeProbability(F)
* where F is the F value and cumulativeProbability * is the Hipparchus implementation of the F distribution.

* * @param categoryData Collection of {@link StreamingStatistics} * each containing data for one category * @param allowOneElementData if true, allow computation for one catagory * only or for one data element per category * @return Pvalue * @throws NullArgumentException if categoryData is null * @throws MathIllegalArgumentException if the length of the categoryData * array is less than 2 or a contained {@link StreamingStatistics} does not have * at least two values * @throws MathIllegalStateException if the p-value can not be computed due to a convergence error * @throws MathIllegalStateException if the maximum number of iterations is exceeded */ public double anovaPValue(final Collection categoryData, final boolean allowOneElementData) throws MathIllegalArgumentException, NullArgumentException, MathIllegalStateException { final AnovaStats a = anovaStats(categoryData, allowOneElementData); final FDistribution fdist = new FDistribution(a.dfbg, a.dfwg); return 1.0 - fdist.cumulativeProbability(a.F); } /** * This method calls the method that actually does the calculations (except * P-value). * * @param categoryData * Collection of double[] arrays each * containing data for one category * @return computed AnovaStats * @throws NullArgumentException * if categoryData is null * @throws MathIllegalArgumentException * if the length of the categoryData array is less * than 2 or a contained double[] array does not * contain at least two values */ private AnovaStats anovaStats(final Collection categoryData) throws MathIllegalArgumentException, NullArgumentException { MathUtils.checkNotNull(categoryData); final Collection categoryDataSummaryStatistics = new ArrayList(categoryData.size()); // convert arrays to SummaryStatistics for (final double[] data : categoryData) { final StreamingStatistics dataSummaryStatistics = new StreamingStatistics(); categoryDataSummaryStatistics.add(dataSummaryStatistics); for (final double val : data) { dataSummaryStatistics.addValue(val); } } return anovaStats(categoryDataSummaryStatistics, false); } /** * Performs an ANOVA test, evaluating the null hypothesis that there * is no difference among the means of the data categories. * *

Preconditions:

    *
  • The categoryData Collection must contain * double[] arrays.
  • *
  • There must be at least two double[] arrays in the * categoryData collection and each of these arrays must * contain at least two values.
  • *
  • alpha must be strictly greater than 0 and less than or equal to 0.5. *

* This implementation uses the * {@link org.hipparchus.distribution.continuous.FDistribution * Hipparchus F Distribution implementation} to estimate the exact * p-value, using the formula

     *   p = 1 - cumulativeProbability(F)
* where F is the F value and cumulativeProbability * is the Hipparchus implementation of the F distribution.

*

True is returned iff the estimated p-value is less than alpha.

* * @param categoryData Collection of double[] * arrays each containing data for one category * @param alpha significance level of the test * @return true if the null hypothesis can be rejected with * confidence 1 - alpha * @throws NullArgumentException if categoryData is null * @throws MathIllegalArgumentException if the length of the categoryData * array is less than 2 or a contained double[] array does not have * at least two values * @throws MathIllegalArgumentException if alpha is not in the range (0, 0.5] * @throws MathIllegalStateException if the p-value can not be computed due to a convergence error * @throws MathIllegalStateException if the maximum number of iterations is exceeded */ public boolean anovaTest(final Collection categoryData, final double alpha) throws MathIllegalArgumentException, NullArgumentException, MathIllegalStateException { if ((alpha <= 0) || (alpha > 0.5)) { throw new MathIllegalArgumentException( LocalizedCoreFormats.OUT_OF_BOUND_SIGNIFICANCE_LEVEL, alpha, 0, 0.5); } return anovaPValue(categoryData) < alpha; } /** * This method actually does the calculations (except P-value). * * @param categoryData Collection of double[] * arrays each containing data for one category * @param allowOneElementData if true, allow computation for one category * only or for one data element per category * @return computed AnovaStats * @throws NullArgumentException if categoryData is null * @throws MathIllegalArgumentException if allowOneElementData is false and the number of * categories is less than 2 or a contained SummaryStatistics does not contain * at least two values */ private AnovaStats anovaStats(final Collection categoryData, final boolean allowOneElementData) throws MathIllegalArgumentException, NullArgumentException { MathUtils.checkNotNull(categoryData); if (!allowOneElementData) { // check if we have enough categories if (categoryData.size() < 2) { throw new MathIllegalArgumentException(LocalizedCoreFormats.TWO_OR_MORE_CATEGORIES_REQUIRED, categoryData.size(), 2); } // check if each category has enough data for (final StreamingStatistics array : categoryData) { if (array.getN() <= 1) { throw new MathIllegalArgumentException(LocalizedCoreFormats.TWO_OR_MORE_VALUES_IN_CATEGORY_REQUIRED, (int) array.getN(), 2); } } } int dfwg = 0; double sswg = 0; double totsum = 0; double totsumsq = 0; int totnum = 0; for (final StreamingStatistics data : categoryData) { final double sum = data.getSum(); final double sumsq = data.getSumOfSquares(); final int num = (int) data.getN(); totnum += num; totsum += sum; totsumsq += sumsq; dfwg += num - 1; final double ss = sumsq - ((sum * sum) / num); sswg += ss; } final double sst = totsumsq - ((totsum * totsum) / totnum); final double ssbg = sst - sswg; final int dfbg = categoryData.size() - 1; final double msbg = ssbg / dfbg; final double mswg = sswg / dfwg; final double F = msbg / mswg; return new AnovaStats(dfbg, dfwg, F); } /** * Convenience class to pass dfbg,dfwg,F values around within OneWayAnova. * No get/set methods provided. */ private static class AnovaStats { /** Degrees of freedom in numerator (between groups). */ private final int dfbg; /** Degrees of freedom in denominator (within groups). */ private final int dfwg; /** Statistic. */ private final double F; /** * Constructor * @param dfbg degrees of freedom in numerator (between groups) * @param dfwg degrees of freedom in denominator (within groups) * @param F statistic */ private AnovaStats(int dfbg, int dfwg, double F) { this.dfbg = dfbg; this.dfwg = dfwg; this.F = F; } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy