All Downloads are FREE. Search and download functionalities are using the official Maven repository.

commonMain.jetbrains.datalore.plot.base.scale.Mappers.kt Maven / Gradle / Ivy

There is a newer version: 4.5.3-alpha1
Show newest version
/*
 * Copyright (c) 2019. JetBrains s.r.o.
 * Use of this source code is governed by the MIT license that can be found in the LICENSE file.
 */

package jetbrains.datalore.plot.base.scale

import jetbrains.datalore.base.function.Function
import jetbrains.datalore.base.gcommon.base.Preconditions.checkState
import jetbrains.datalore.base.gcommon.collect.ClosedRange
import jetbrains.datalore.plot.base.scale.breaks.QuantizeScale
import jetbrains.datalore.plot.common.data.SeriesUtil
import kotlin.math.round

object Mappers {
    val IDENTITY = { v: Double? -> v }

    fun  undefined(): (Double?) -> T = { throw IllegalStateException("Undefined mapper") }

    fun  nullable(f: (Double?) -> T, ifNull: T): (Double?) -> T {
        return { n ->
            if (n == null) {
                ifNull
            } else {
                f(n)
            }
        }
    }

    fun constant(v: Double): (Double?) -> Double = { v }

    fun mul(domain: ClosedRange, rangeSpan: Double): (Double?) -> Double? {
        val factor = rangeSpan / (domain.upperEnd - domain.lowerEnd)
        checkState(!(factor.isInfinite() || factor.isNaN()), "Can't create mapper with ratio: $factor")
        return mul(factor)
    }

    fun mul(factor: Double): (Double?) -> Double? {
        return { v ->
            if (v != null) {
                factor * v
            } else null
        }
    }

    fun linear(domain: ClosedRange, range: ClosedRange): (Double?) -> Double {
        return linear(
            domain,
            range.lowerEnd,
            range.upperEnd,
            Double.NaN
        )
    }

    fun linear(domain: ClosedRange, range: ClosedRange, defaultValue: Double): (Double?) -> Double {
        return linear(
            domain,
            range.lowerEnd,
            range.upperEnd,
            defaultValue
        )
    }

    fun linear(
        domain: ClosedRange,
        rangeLow: Double,
        rangeHigh: Double,
        defaultValue: Double
    ): (Double?) -> Double {
        val slop = (rangeHigh - rangeLow) / (domain.upperEnd - domain.lowerEnd)
        if (!SeriesUtil.isFinite(slop)) {
            // no slop
            val v = (rangeHigh - rangeLow) / 2 + rangeLow
            return constant(v)
        }
        val intersect = rangeLow - domain.lowerEnd * slop
        return { input ->
            if (SeriesUtil.isFinite(input))
                input!! * slop + intersect
            else
                defaultValue
        }
    }

    fun discreteToContinuous(
        domainValues: Collection<*>,
        outputRange: ClosedRange,
        naValue: Double
    ): (Double?) -> Double? {
        val numberByDomainValue =
            MapperUtil.mapDiscreteDomainValuesToNumbers(domainValues)
        val dataRange = SeriesUtil.range(numberByDomainValue.values) ?: return IDENTITY
        return linear(dataRange, outputRange, naValue)
    }

    fun  discrete(outputValues: List, defaultOutputValue: T): (Double?) -> T? {
        val f = DiscreteFun(outputValues, defaultOutputValue)
        return { f.apply(it) }
    }

    fun  quantized(
        domain: ClosedRange?,
        outputValues: Collection,
        defaultOutputValue: T
    ): (Double?) -> T {
        if (domain == null) {
            return { defaultOutputValue }
        }

        // todo: extract quantizer
        val quantizer = QuantizeScale()
        quantizer.domain(domain.lowerEnd, domain.upperEnd)
        quantizer.range(outputValues)

        val f = QuantizedFun(quantizer, defaultOutputValue)
        return { f.apply(it) }
    }

    private class DiscreteFun(
        private val myOutputValues: List,
        private val myDefaultOutputValue: T
    ) : Function {

        override fun apply(value: Double?): T? {
            if (!SeriesUtil.isFinite(value)) {
                return myDefaultOutputValue
            }
            // ToDo: index-based discrete fun won't work for discrete numeric onput (see: MapperUtil#mapDiscreteDomainValuesToNumbers())
            var index = round(value!!).toInt()
            index %= myOutputValues.size
            if (index < 0) {
                index += myOutputValues.size
            }
            return myOutputValues[index]
        }
    }

    private class QuantizedFun internal constructor(
        private val myQuantizer: QuantizeScale,
        private val myDefaultOutputValue: T
    ) : Function {
        override fun apply(value: Double?): T {
            return if (!SeriesUtil.isFinite(value)) myDefaultOutputValue else myQuantizer.quantize(value!!)
        }
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy