commonMain.org.jetbrains.letsPlot.stat.stat_smooth.kt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of lets-plot-kotlin-kernel Show documentation
Show all versions of lets-plot-kotlin-kernel Show documentation
Lets-Plot Kotlin API without dependencies.
/*
* Copyright (c) 2021. JetBrains s.r.o.
* Use of this source code is governed by the MIT license that can be found in the LICENSE file.
*/
package org.jetbrains.letsPlot.stat
import org.jetbrains.letsPlot.Stat
import org.jetbrains.letsPlot.intern.GeomKind
import org.jetbrains.letsPlot.intern.Options
import org.jetbrains.letsPlot.intern.layer.GeomOptions
import org.jetbrains.letsPlot.intern.Layer
import org.jetbrains.letsPlot.intern.layer.PosOptions
import org.jetbrains.letsPlot.intern.layer.SamplingOptions
import org.jetbrains.letsPlot.intern.layer.WithColorOption
import org.jetbrains.letsPlot.intern.layer.WithFillOption
import org.jetbrains.letsPlot.intern.layer.geom.SmoothAesthetics
import org.jetbrains.letsPlot.intern.layer.geom.SmoothMapping
import org.jetbrains.letsPlot.intern.layer.stat.SmoothStatParameters
import org.jetbrains.letsPlot.pos.positionIdentity
@Suppress("ClassName")
/**
* Displays a smoothed conditional mean.
*
* ## Notes
*
* `statSmooth()` aids the eye in seeing patterns in the presence of overplotting.
*
* Computed variables:
*
* - ..y.. : predicted (smoothed) value.
* - ..ymin.. : lower pointwise confidence interval around the mean.
* - ..ymax.. : upper pointwise confidence interval around the mean.
* - ..se.. : standard error.
*
* @param data The data to be displayed in this layer. If null, the default, the data
* is inherited from the plot data as specified in the call to [letsPlot][org.jetbrains.letsPlot.letsPlot].
* @param geom The geometry to display the smooth stat for this layer, default is smoothed line,
* see [Geom][org.jetbrains.letsPlot.Geom].
* @param position Position adjustment: `positionIdentity`, `positionStack()`, `positionDodge()`, etc. see
* [Position](https://lets-plot.org/kotlin/-lets--plot--kotlin/org.jetbrains.letsPlot.pos/).
* @param showLegend default = true.
* false - do not show legend for this layer.
* @param inheritAes default = true.
* false - do not combine the layer aesthetic mappings with the plot shared mappings.
* @param sampling Result of the call to the `samplingXxx()` function.
* To prevent any sampling for this layer pass value `samplingNone`.
* For more info see [sampling.html](https://lets-plot.org/kotlin/sampling.html).
* @param x X-axis value.
* @param y Predicted (smoothed) value.
* @param ymin Lower pointwise confidence interval around the mean.
* @param ymax Upper pointwise confidence interval around the mean.
* @param size Lines width.
* @param linetype Type of the line.
* Accept codes or names (0 = "blank", 1 = "solid", 2 = "dashed", 3 = "dotted", 4 = "dotdash", 5 = "longdash", 6 = "twodash"),
* a hex string (up to 8 digits for dash-gap lengths),
* or a pattern `offset to listOf(dash, gap, ...)` / `listOf(dash, gap, ...)`.
* For more info see: [aesthetics.html#line-types](https://lets-plot.org/kotlin/aesthetics.html#line-types).
* @param color Color of the geometry.
* For more info see: [aesthetics.html#color-and-fill](https://lets-plot.org/kotlin/aesthetics.html#color-and-fill).
* @param fill Fill color.
* For more info see: [aesthetics.html#color-and-fill](https://lets-plot.org/kotlin/aesthetics.html#color-and-fill).
* @param alpha Transparency level of a layer. Understands numbers between 0 and 1.
* @param method default = "lm".
* Smoothing method: lm (Linear Model) or loess (Locally Estimated Scatterplot Smoothing).
* @param n default = 80. Number of points to evaluate smoother at.
* @param level default = 0.95. Level of confidence interval to use.
* @param se default = true. To display confidence interval around smooth.
* @param span default = 0.5.
* Only for LOESS method. The fraction of source points closest to the current point
* is taken into account for computing a least-squares regression. A sensible value is usually 0.25 to 0.5.
* @param deg default = 1. Degree of polynomial for linear regression model.
* @param seed Random seed for LOESS sampling.
* @param maxN default = 1000. Maximum number of data-points for LOESS method.
* If this quantity exceeded random sampling is applied to data.
* @param colorBy default = "color" ("fill", "color", "paint_a", "paint_b", "paint_c").
* Defines the color aesthetic for the geometry.
* @param fillBy default = "fill" ("fill", "color", "paint_a", "paint_b", "paint_c").
* Defines the fill aesthetic for the geometry.
* @param mapping Set of aesthetic mappings.
* Aesthetic mappings describe the way that variables in the data are
* mapped to plot "aesthetics".
*/
class statSmooth(
data: Map<*, *>? = null,
geom: GeomOptions = GeomOptions(GeomKind.SMOOTH),
position: PosOptions = positionIdentity,
showLegend: Boolean = true,
inheritAes: Boolean? = null,
manualKey: Any? = null,
sampling: SamplingOptions? = null,
override val x: Number? = null,
override val y: Number? = null,
override val ymin: Number? = null,
override val ymax: Number? = null,
override val size: Number? = null,
override val linetype: Any? = null,
override val color: Any? = null,
override val fill: Any? = null,
override val alpha: Number? = null,
override val method: String? = null,
override val n: Int? = null,
override val level: Number? = null,
override val se: Boolean? = null,
override val span: Number? = null,
override val deg: Int? = null,
override val seed: Long? = null,
override val maxN: Int? = null,
override val colorBy: String? = null,
override val fillBy: String? = null,
mapping: SmoothMapping.() -> Unit = {}
) : SmoothAesthetics,
SmoothStatParameters,
WithColorOption,
WithFillOption,
Layer(
mapping = SmoothMapping().apply(mapping).seal(),
data = data,
geom = geom,
stat = Stat.smooth(),
position = position,
showLegend = showLegend,
inheritAes = inheritAes,
manualKey = manualKey,
sampling = sampling
) {
override fun seal(): Options {
return super.seal() +
super.seal() +
super.seal() +
super.seal()
}
}