org.jflac.FLACEncoder Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jflac-codec Show documentation
Show all versions of jflac-codec Show documentation
Encoder and Decoder for FLAC files including Java Sound SPI
package org.jflac;
/**
* libFLAC - Free Lossless Audio Codec library
* Copyright (C) 2000,2001,2002,2003 Josh Coalson
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
import org.jflac.frame.EntropyPartitionedRiceContents;
import org.jflac.io.BitOutputStream;
public class FLACEncoder {
private class verify_input_fifo {
int[][] data = new int[Constants.MAX_CHANNELS][Constants.MAX_BLOCK_SIZE];
int size; /* of each data[] in samples */
int tail;
};
private class verify_output {
byte[] data;
int capacity;
int bytes;
};
private static final int ENCODER_IN_MAGIC = 0;
private static final int ENCODER_IN_METADATA = 1;
private static final int ENCODER_IN_AUDIO = 2;
// stream encoder states
private static final int STREAM_ENCODER_OK = 0;
/**< The encoder is in the normal OK state. */
private static final int STREAM_ENCODER_VERIFY_DECODER_ERROR = 1;
/**< An error occurred in the underlying verify stream decoder;
* check stream_encoder_get_verify_decoder_state().
*/
private static final int STREAM_ENCODER_VERIFY_MISMATCH_IN_AUDIO_DATA = 2;
/**< The verify decoder detected a mismatch between the original
* audio signal and the decoded audio signal.
*/
private static final int STREAM_ENCODER_INVALID_CALLBACK = 3;
/**< The encoder was initialized before setting all the required callbacks. */
private static final int STREAM_ENCODER_INVALID_NUMBER_OF_CHANNELS = 4;
/**< The encoder has an invalid setting for number of channels. */
private static final int STREAM_ENCODER_INVALID_BITS_PER_SAMPLE = 5;
/**< The encoder has an invalid setting for bits-per-sample.
* FLAC supports 4-32 bps but the reference encoder currently supports
* only up to 24 bps.
*/
private static final int STREAM_ENCODER_INVALID_SAMPLE_RATE = 6;
/**< The encoder has an invalid setting for the input sample rate. */
private static final int STREAM_ENCODER_INVALID_BLOCK_SIZE = 7;
/**< The encoder has an invalid setting for the block size. */
private static final int STREAM_ENCODER_INVALID_MAX_LPC_ORDER = 8;
/**< The encoder has an invalid setting for the maximum LPC order. */
private static final int STREAM_ENCODER_INVALID_QLP_COEFF_PRECISION = 9;
/**< The encoder has an invalid setting for the precision of the quantized linear predictor coefficients. */
private static final int STREAM_ENCODER_MID_SIDE_CHANNELS_MISMATCH = 10;
/**< Mid/side coding was specified but the number of channels is not equal to 2. */
private static final int STREAM_ENCODER_MID_SIDE_SAMPLE_SIZE_MISMATCH = 11;
/**< Deprecated. */
private static final int STREAM_ENCODER_ILLEGAL_MID_SIDE_FORCE = 12;
/**< Loose mid/side coding was specified but mid/side coding was not. */
private static final int STREAM_ENCODER_BLOCK_SIZE_TOO_SMALL_FOR_LPC_ORDER = 13;
/**< The specified block size is less than the maximum LPC order. */
private static final int STREAM_ENCODER_NOT_STREAMABLE = 14;
/**< The encoder is bound to the "streamable subset" but other settings violate it. */
private static final int STREAM_ENCODER_FRAMING_ERROR = 15;
/**< An error occurred while writing the stream; usually, the write_callback returned an error. */
private static final int STREAM_ENCODER_INVALID_METADATA = 16;
/**< The metadata input to the encoder is invalid, in one of the following ways:
* - stream_encoder_set_metadata() was called with a null pointer but a block count > 0
* - One of the metadata blocks contains an undefined type
* - It contains an illegal CUESHEET as checked by format_cuesheet_is_legal()
* - It contains an illegal SEEKTABLE as checked by format_seektable_is_legal()
* - It contains more than one SEEKTABLE block or more than one VORBIS_COMMENT block
*/
private static final int STREAM_ENCODER_FATAL_ERROR_WHILE_ENCODING = 17;
/**< An error occurred while writing the stream; usually, the write_callback returned an error. */
private static final int STREAM_ENCODER_FATAL_ERROR_WHILE_WRITING = 18;
/**< The write_callback returned an error. */
private static final int STREAM_ENCODER_MEMORY_ALLOCATION_ERROR = 19;
/**< Memory allocation failed. */
private static final int STREAM_ENCODER_ALREADY_INITIALIZED = 20;
/**< stream_encoder_init() was called when the encoder was
* already initialized, usually because
* stream_encoder_finish() was not called.
*/
private static final int STREAM_ENCODER_UNINITIALIZED = 21;
/**< The encoder is in the uninitialized state. */
/***********************************************************************
*
* Private class data
*
***********************************************************************/
int input_capacity; /* current size (in samples) of the signal and residual buffers */
int[][] integer_signal = new int[Constants.MAX_CHANNELS][Constants.MAX_BLOCK_SIZE]; /* the integer version of the input signal */
int[][] integer_signal_mid_side = new int[2][Constants.MAX_BLOCK_SIZE]; /* the integer version of the mid-side input signal (stereo only) */
double[][] real_signal = new double[Constants.MAX_CHANNELS][Constants.MAX_BLOCK_SIZE]; /* the floating-point version of the input signal */
double[][] real_signal_mid_side = new double[2][Constants.MAX_BLOCK_SIZE]; /* the floating-point version of the mid-side input signal (stereo only) */
int[] subframe_bps = new int[Constants.MAX_CHANNELS]; /* the effective bits per sample of the input signal (stream bps - wasted bits) */
int[] subframe_bps_mid_side = new int[2]; /* the effective bits per sample of the mid-side input signal (stream bps - wasted bits + 0/1) */
int[][] residual_workspace = new int[Constants.MAX_CHANNELS][2]; /* each channel has a candidate and best workspace where the subframe residual signals will be stored */
int[][] residual_workspace_mid_side = new int[2][2];
//Subframe subframe_workspace[Constants.MAX_CHANNELS][2];
//Subframe subframe_workspace_mid_side[2][2];
//Subframe *subframe_workspace_ptr[Constants.MAX_CHANNELS][2];
//Subframe *subframe_workspace_ptr_mid_side[2][2];
EntropyPartitionedRiceContents[][] partitioned_rice_contents_workspace = new EntropyPartitionedRiceContents[Constants.MAX_CHANNELS][2];
EntropyPartitionedRiceContents[][] partitioned_rice_contents_workspace_mid_side = new EntropyPartitionedRiceContents[Constants.MAX_CHANNELS][2];
EntropyPartitionedRiceContents[][] partitioned_rice_contents_workspace_ptr = new EntropyPartitionedRiceContents[Constants.MAX_CHANNELS][2];
EntropyPartitionedRiceContents[][] partitioned_rice_contents_workspace_ptr_mid_side = new EntropyPartitionedRiceContents[Constants.MAX_CHANNELS][2];
int[] best_subframe = new int[Constants.MAX_CHANNELS]; /* index into the above workspaces */
int[] best_subframe_mid_side = new int[2];
int[] best_subframe_bits = new int[Constants.MAX_CHANNELS]; /* size in bits of the best subframe for each channel */
int[] best_subframe_bits_mid_side = new int[2];
//uint32 *abs_residual; /* workspace where abs(candidate residual) is stored */
//uint64 *abs_residual_partition_sums; /* workspace where the sum of abs(candidate residual) for each partition is stored */
//unsigned *raw_bits_per_partition; /* workspace where the sum of silog2(candidate residual) for each partition is stored */
BitOutputStream frame = new BitOutputStream(); /* the current frame being worked on */
double loose_mid_side_stereo_frames_exact; /* exact number of frames the encoder will use before trying both independent and mid/side frames again */
int loose_mid_side_stereo_frames; /* rounded number of frames the encoder will use before trying both independent and mid/side frames again */
int loose_mid_side_stereo_frame_count; /* number of frames using the current channel assignment */
int last_channel_assignment;
//StreamMetadata metadata;
int current_sample_number;
int current_frame_number;
//struct MD5Context md5context;
//CPUInfo cpuinfo;
//unsigned (*local_fixed_compute_best_predictor)(int data[], unsigned data_len, double residual_bits_per_sample[MAX_FIXED_ORDER+1]);
//void (*local_lpc_compute_autocorrelation)(double data[], unsigned data_len, unsigned lag, double autoc[]);
//void (*local_lpc_compute_residual_from_qlp_coefficients)(int data[], unsigned data_len, int qlp_coeff[], unsigned order, int lp_quantization, int residual[]);
//void (*local_lpc_compute_residual_from_qlp_coefficients_64bit)(int data[], unsigned data_len, int qlp_coeff[], unsigned order, int lp_quantization, int residual[]);
//void (*local_lpc_compute_residual_from_qlp_coefficients_16bit)(int data[], unsigned data_len, int qlp_coeff[], unsigned order, int lp_quantization, int residual[]);
boolean use_wide_by_block; /* use slow 64-bit versions of some functions because of the block size */
boolean use_wide_by_partition; /* use slow 64-bit versions of some functions because of the min partition order and blocksize */
boolean use_wide_by_order; /* use slow 64-bit versions of some functions because of the lpc order */
boolean precompute_partition_sums; /* our initial guess as to whether precomputing the partitions sums will be a speed improvement */
boolean disable_constant_subframes;
boolean disable_fixed_subframes;
boolean disable_verbatim_subframes;
//StreamEncoderWriteCallback write_callback;
//StreamEncoderMetadataCallback metadata_callback;
//void *client_data;
/* unaligned (original) pointers to allocated data */
int[] integer_signal_unaligned = new int[Constants.MAX_CHANNELS];
int[] integer_signal_mid_side_unaligned = new int[2];
double[] real_signal_unaligned = new double[Constants.MAX_CHANNELS];
double[] real_signal_mid_side_unaligned = new double[2];
int[][] residual_workspace_unaligned = new int[Constants.MAX_CHANNELS][2];
int[][] residual_workspace_mid_side_unaligned = new int[2][2];
//uint32 *abs_residual_unaligned;
//uint64 *abs_residual_partition_sums_unaligned;
//unsigned *raw_bits_per_partition_unaligned;
/*
* These fields have been moved here from private function local
* declarations merely to save stack space during encoding.
*/
//double[] lp_coeff = new double[Constants.MAX_LPC_ORDER][Constants.MAX_LPC_ORDER]; /* from process_subframe_() */
EntropyPartitionedRiceContents[] partitioned_rice_contents_extra = new EntropyPartitionedRiceContents[2]; /* from find_best_partition_order_() */
/*
* The data for the verify section
*/
private class VerifyData {
FLACDecoder decoder;
int state_hint;
boolean needs_magic_hack;
verify_input_fifo input_fifo;
verify_output output;
private class error_stats {
long absolute_sample;
int frame_number;
int channel;
int sample;
int expected;
int got;
}
}
private VerifyData verifyData = new VerifyData();
boolean is_being_deleted; /* if true, call to ..._finish() from ..._delete() will not call the callbacks */
// protected
int state;
boolean verify;
boolean streamable_subset;
boolean do_mid_side_stereo;
boolean loose_mid_side_stereo;
int channels;
int bits_per_sample;
int sample_rate;
int blocksize;
int max_lpc_order;
int qlp_coeff_precision;
boolean do_qlp_coeff_prec_search;
boolean do_exhaustive_model_search;
boolean do_escape_coding;
int min_residual_partition_order;
int max_residual_partition_order;
int rice_parameter_search_dist;
long total_samples_estimate;
//StreamMetadata **metadata;
int num_metadata_blocks;
// private
/***********************************************************************
*
* Public static class data
*
***********************************************************************/
private static final String StreamEncoderStateString[] = new String[] {
"STREAM_ENCODER_OK",
"STREAM_ENCODER_VERIFY_DECODER_ERROR",
"STREAM_ENCODER_VERIFY_MISMATCH_IN_AUDIO_DATA",
"STREAM_ENCODER_INVALID_CALLBACK",
"STREAM_ENCODER_INVALID_NUMBER_OF_CHANNELS",
"STREAM_ENCODER_INVALID_BITS_PER_SAMPLE",
"STREAM_ENCODER_INVALID_SAMPLE_RATE",
"STREAM_ENCODER_INVALID_BLOCK_SIZE",
"STREAM_ENCODER_INVALID_MAX_LPC_ORDER",
"STREAM_ENCODER_INVALID_QLP_COEFF_PRECISION",
"STREAM_ENCODER_MID_SIDE_CHANNELS_MISMATCH",
"STREAM_ENCODER_MID_SIDE_SAMPLE_SIZE_MISMATCH",
"STREAM_ENCODER_ILLEGAL_MID_SIDE_FORCE",
"STREAM_ENCODER_BLOCK_SIZE_TOO_SMALL_FOR_LPC_ORDER",
"STREAM_ENCODER_NOT_STREAMABLE",
"STREAM_ENCODER_FRAMING_ERROR",
"STREAM_ENCODER_INVALID_METADATA",
"STREAM_ENCODER_FATAL_ERROR_WHILE_ENCODING",
"STREAM_ENCODER_FATAL_ERROR_WHILE_WRITING",
"STREAM_ENCODER_MEMORY_ALLOCATION_ERROR",
"STREAM_ENCODER_ALREADY_INITIALIZED",
"STREAM_ENCODER_UNINITIALIZED"
};
private static final String StreamEncoderWriteStatusString[] = new String[] {
"STREAM_ENCODER_WRITE_STATUS_OK",
"STREAM_ENCODER_WRITE_STATUS_FATAL_ERROR"
};
/***********************************************************************
*
* Class constructor/destructor
*
*/
public FLACEncoder() {
setDefaults();
is_being_deleted = false;
/*
for (int i = 0; i < Constants.MAX_CHANNELS; i++) {
encoder->private_->subframe_workspace_ptr[i][0] = &encoder->private_->subframe_workspace[i][0];
encoder->private_->subframe_workspace_ptr[i][1] = &encoder->private_->subframe_workspace[i][1];
}
for(i = 0; i < 2; i++) {
encoder->private_->subframe_workspace_ptr_mid_side[i][0] = &encoder->private_->subframe_workspace_mid_side[i][0];
encoder->private_->subframe_workspace_ptr_mid_side[i][1] = &encoder->private_->subframe_workspace_mid_side[i][1];
}
for(i = 0; i < Constants.MAX_CHANNELS; i++) {
encoder->private_->partitioned_rice_contents_workspace_ptr[i][0] = &encoder->private_->partitioned_rice_contents_workspace[i][0];
encoder->private_->partitioned_rice_contents_workspace_ptr[i][1] = &encoder->private_->partitioned_rice_contents_workspace[i][1];
}
for(i = 0; i < 2; i++) {
encoder->private_->partitioned_rice_contents_workspace_ptr_mid_side[i][0] = &encoder->private_->partitioned_rice_contents_workspace_mid_side[i][0];
encoder->private_->partitioned_rice_contents_workspace_ptr_mid_side[i][1] = &encoder->private_->partitioned_rice_contents_workspace_mid_side[i][1];
}
for(i = 0; i < Constants.MAX_CHANNELS; i++) {
format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->partitioned_rice_contents_workspace[i][0]);
format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->partitioned_rice_contents_workspace[i][1]);
}
for(i = 0; i < 2; i++) {
format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->partitioned_rice_contents_workspace_mid_side[i][0]);
format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->partitioned_rice_contents_workspace_mid_side[i][1]);
}
for(i = 0; i < 2; i++)
format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->partitioned_rice_contents_extra[i]);
*/
state = STREAM_ENCODER_UNINITIALIZED;
}
/*
void stream_encoder_delete(StreamEncoder *encoder)
{
unsigned i;
ASSERT(0 != encoder);
ASSERT(0 != encoder->protected_);
ASSERT(0 != encoder->private_);
ASSERT(0 != encoder->private_->frame);
encoder->private_->is_being_deleted = true;
stream_encoder_finish(encoder);
if(0 != encoder->private_->verify.decoder)
stream_decoder_delete(encoder->private_->verify.decoder);
for(i = 0; i < Constants.MAX_CHANNELS; i++) {
format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->partitioned_rice_contents_workspace[i][0]);
format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->partitioned_rice_contents_workspace[i][1]);
}
for(i = 0; i < 2; i++) {
format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->partitioned_rice_contents_workspace_mid_side[i][0]);
format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->partitioned_rice_contents_workspace_mid_side[i][1]);
}
for(i = 0; i < 2; i++)
format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->partitioned_rice_contents_extra[i]);
bitbuffer_delete(encoder->private_->frame);
free(encoder->private_);
free(encoder->protected_);
free(encoder);
}
*/
/***********************************************************************
*
* Public class methods
*
***********************************************************************/
/*
StreamEncoderState stream_encoder_init(StreamEncoder *encoder)
{
unsigned i;
boolean metadata_has_seektable, metadata_has_vorbis_comment;
ASSERT(0 != encoder);
if(encoder->protected_->state != STREAM_ENCODER_UNINITIALIZED)
return encoder->protected_->state = STREAM_ENCODER_ALREADY_INITIALIZED;
encoder->protected_->state = STREAM_ENCODER_OK;
if(0 == encoder->private_->write_callback || 0 == encoder->private_->metadata_callback)
return encoder->protected_->state = STREAM_ENCODER_INVALID_CALLBACK;
if(encoder->protected_->channels == 0 || encoder->protected_->channels > Constants.MAX_CHANNELS)
return encoder->protected_->state = STREAM_ENCODER_INVALID_NUMBER_OF_CHANNELS;
if(encoder->protected_->do_mid_side_stereo && encoder->protected_->channels != 2)
return encoder->protected_->state = STREAM_ENCODER_MID_SIDE_CHANNELS_MISMATCH;
if(encoder->protected_->loose_mid_side_stereo && !encoder->protected_->do_mid_side_stereo)
return encoder->protected_->state = STREAM_ENCODER_ILLEGAL_MID_SIDE_FORCE;
if(encoder->protected_->bits_per_sample >= 32)
encoder->protected_->do_mid_side_stereo = false; // since we do 32-bit math, the side channel would have 33 bps and overflow
if(encoder->protected_->bits_per_sample < MIN_BITS_PER_SAMPLE || encoder->protected_->bits_per_sample > REFERENCE_CODEC_MAX_BITS_PER_SAMPLE)
return encoder->protected_->state = STREAM_ENCODER_INVALID_BITS_PER_SAMPLE;
if(!format_sample_rate_is_valid(encoder->protected_->sample_rate))
return encoder->protected_->state = STREAM_ENCODER_INVALID_SAMPLE_RATE;
if(encoder->protected_->blocksize < MIN_BLOCK_SIZE || encoder->protected_->blocksize > MAX_BLOCK_SIZE)
return encoder->protected_->state = STREAM_ENCODER_INVALID_BLOCK_SIZE;
if(encoder->protected_->max_lpc_order > MAX_LPC_ORDER)
return encoder->protected_->state = STREAM_ENCODER_INVALID_MAX_LPC_ORDER;
if(encoder->protected_->blocksize < encoder->protected_->max_lpc_order)
return encoder->protected_->state = STREAM_ENCODER_BLOCK_SIZE_TOO_SMALL_FOR_LPC_ORDER;
if(encoder->protected_->qlp_coeff_precision == 0) {
if(encoder->protected_->bits_per_sample < 16) {
// @@@ need some data about how to set this here w.r.t. blocksize and sample rate
// @@@ until then we'll make a guess
encoder->protected_->qlp_coeff_precision = max(MIN_QLP_COEFF_PRECISION, 2 + encoder->protected_->bits_per_sample / 2);
}
else if(encoder->protected_->bits_per_sample == 16) {
if(encoder->protected_->blocksize <= 192)
encoder->protected_->qlp_coeff_precision = 7;
else if(encoder->protected_->blocksize <= 384)
encoder->protected_->qlp_coeff_precision = 8;
else if(encoder->protected_->blocksize <= 576)
encoder->protected_->qlp_coeff_precision = 9;
else if(encoder->protected_->blocksize <= 1152)
encoder->protected_->qlp_coeff_precision = 10;
else if(encoder->protected_->blocksize <= 2304)
encoder->protected_->qlp_coeff_precision = 11;
else if(encoder->protected_->blocksize <= 4608)
encoder->protected_->qlp_coeff_precision = 12;
else
encoder->protected_->qlp_coeff_precision = 13;
}
else {
if(encoder->protected_->blocksize <= 384)
encoder->protected_->qlp_coeff_precision = MAX_QLP_COEFF_PRECISION-2;
else if(encoder->protected_->blocksize <= 1152)
encoder->protected_->qlp_coeff_precision = MAX_QLP_COEFF_PRECISION-1;
else
encoder->protected_->qlp_coeff_precision = MAX_QLP_COEFF_PRECISION;
}
ASSERT(encoder->protected_->qlp_coeff_precision <= MAX_QLP_COEFF_PRECISION);
}
else if(encoder->protected_->qlp_coeff_precision < MIN_QLP_COEFF_PRECISION || encoder->protected_->qlp_coeff_precision > MAX_QLP_COEFF_PRECISION)
return encoder->protected_->state = STREAM_ENCODER_INVALID_QLP_COEFF_PRECISION;
if(encoder->protected_->streamable_subset) {
if(
encoder->protected_->blocksize != 192 &&
encoder->protected_->blocksize != 576 &&
encoder->protected_->blocksize != 1152 &&
encoder->protected_->blocksize != 2304 &&
encoder->protected_->blocksize != 4608 &&
encoder->protected_->blocksize != 256 &&
encoder->protected_->blocksize != 512 &&
encoder->protected_->blocksize != 1024 &&
encoder->protected_->blocksize != 2048 &&
encoder->protected_->blocksize != 4096 &&
encoder->protected_->blocksize != 8192 &&
encoder->protected_->blocksize != 16384
)
return encoder->protected_->state = STREAM_ENCODER_NOT_STREAMABLE;
if(
encoder->protected_->sample_rate != 8000 &&
encoder->protected_->sample_rate != 16000 &&
encoder->protected_->sample_rate != 22050 &&
encoder->protected_->sample_rate != 24000 &&
encoder->protected_->sample_rate != 32000 &&
encoder->protected_->sample_rate != 44100 &&
encoder->protected_->sample_rate != 48000 &&
encoder->protected_->sample_rate != 96000
)
return encoder->protected_->state = STREAM_ENCODER_NOT_STREAMABLE;
if(
encoder->protected_->bits_per_sample != 8 &&
encoder->protected_->bits_per_sample != 12 &&
encoder->protected_->bits_per_sample != 16 &&
encoder->protected_->bits_per_sample != 20 &&
encoder->protected_->bits_per_sample != 24
)
return encoder->protected_->state = STREAM_ENCODER_NOT_STREAMABLE;
if(encoder->protected_->max_residual_partition_order > SUBSET_MAX_RICE_PARTITION_ORDER)
return encoder->protected_->state = STREAM_ENCODER_NOT_STREAMABLE;
}
if(encoder->protected_->max_residual_partition_order >= (1u << ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN))
encoder->protected_->max_residual_partition_order = (1u << ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN) - 1;
if(encoder->protected_->min_residual_partition_order >= encoder->protected_->max_residual_partition_order)
encoder->protected_->min_residual_partition_order = encoder->protected_->max_residual_partition_order;
// validate metadata
if(0 == encoder->protected_->metadata && encoder->protected_->num_metadata_blocks > 0)
return encoder->protected_->state = STREAM_ENCODER_INVALID_METADATA;
metadata_has_seektable = false;
metadata_has_vorbis_comment = false;
for(i = 0; i < encoder->protected_->num_metadata_blocks; i++) {
if(encoder->protected_->metadata[i]->type == METADATA_TYPE_STREAMINFO)
return encoder->protected_->state = STREAM_ENCODER_INVALID_METADATA;
else if(encoder->protected_->metadata[i]->type == METADATA_TYPE_SEEKTABLE) {
if(metadata_has_seektable) // only one is allowed
return encoder->protected_->state = STREAM_ENCODER_INVALID_METADATA;
metadata_has_seektable = true;
if(!format_seektable_is_legal(&encoder->protected_->metadata[i]->data.seek_table))
return encoder->protected_->state = STREAM_ENCODER_INVALID_METADATA;
}
else if(encoder->protected_->metadata[i]->type == METADATA_TYPE_VORBIS_COMMENT) {
if(metadata_has_vorbis_comment) // only one is allowed
return encoder->protected_->state = STREAM_ENCODER_INVALID_METADATA;
metadata_has_vorbis_comment = true;
}
else if(encoder->protected_->metadata[i]->type == METADATA_TYPE_CUESHEET) {
if(!format_cuesheet_is_legal(&encoder->protected_->metadata[i]->data.cue_sheet, encoder->protected_->metadata[i]->data.cue_sheet.is_cd, 0))
return encoder->protected_->state = STREAM_ENCODER_INVALID_METADATA;
}
}
encoder->private_->input_capacity = 0;
for(i = 0; i < encoder->protected_->channels; i++) {
encoder->private_->integer_signal_unaligned[i] = encoder->private_->integer_signal[i] = 0;
encoder->private_->real_signal_unaligned[i] = encoder->private_->real_signal[i] = 0;
}
for(i = 0; i < 2; i++) {
encoder->private_->integer_signal_mid_side_unaligned[i] = encoder->private_->integer_signal_mid_side[i] = 0;
encoder->private_->real_signal_mid_side_unaligned[i] = encoder->private_->real_signal_mid_side[i] = 0;
}
for(i = 0; i < encoder->protected_->channels; i++) {
encoder->private_->residual_workspace_unaligned[i][0] = encoder->private_->residual_workspace[i][0] = 0;
encoder->private_->residual_workspace_unaligned[i][1] = encoder->private_->residual_workspace[i][1] = 0;
encoder->private_->best_subframe[i] = 0;
}
for(i = 0; i < 2; i++) {
encoder->private_->residual_workspace_mid_side_unaligned[i][0] = encoder->private_->residual_workspace_mid_side[i][0] = 0;
encoder->private_->residual_workspace_mid_side_unaligned[i][1] = encoder->private_->residual_workspace_mid_side[i][1] = 0;
encoder->private_->best_subframe_mid_side[i] = 0;
}
encoder->private_->abs_residual_unaligned = encoder->private_->abs_residual = 0;
encoder->private_->abs_residual_partition_sums_unaligned = encoder->private_->abs_residual_partition_sums = 0;
encoder->private_->raw_bits_per_partition_unaligned = encoder->private_->raw_bits_per_partition = 0;
encoder->private_->loose_mid_side_stereo_frames_exact = (double)encoder->protected_->sample_rate * 0.4 / (double)encoder->protected_->blocksize;
encoder->private_->loose_mid_side_stereo_frames = (unsigned)(encoder->private_->loose_mid_side_stereo_frames_exact + 0.5);
if(encoder->private_->loose_mid_side_stereo_frames == 0)
encoder->private_->loose_mid_side_stereo_frames = 1;
encoder->private_->loose_mid_side_stereo_frame_count = 0;
encoder->private_->current_sample_number = 0;
encoder->private_->current_frame_number = 0;
encoder->private_->use_wide_by_block = (encoder->protected_->bits_per_sample + bitmath_ilog2(encoder->protected_->blocksize)+1 > 30);
encoder->private_->use_wide_by_order = (encoder->protected_->bits_per_sample + bitmath_ilog2(max(encoder->protected_->max_lpc_order, MAX_FIXED_ORDER))+1 > 30); //@@@ need to use this?
encoder->private_->use_wide_by_partition = (false); //@@@ need to set this
// get the CPU info and set the function pointers
cpu_info(&encoder->private_->cpuinfo);
// first default to the non-asm routines
encoder->private_->local_lpc_compute_autocorrelation = lpc_compute_autocorrelation;
encoder->private_->local_fixed_compute_best_predictor = fixed_compute_best_predictor;
encoder->private_->local_lpc_compute_residual_from_qlp_coefficients = lpc_compute_residual_from_qlp_coefficients;
encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_64bit = lpc_compute_residual_from_qlp_coefficients_wide;
encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit = lpc_compute_residual_from_qlp_coefficients;
// now override with asm where appropriate
#ifndef NO_ASM
if(encoder->private_->cpuinfo.use_asm) {
#ifdef CPU_IA32
ASSERT(encoder->private_->cpuinfo.type == CPUINFO_TYPE_IA32);
#ifdef HAS_NASM
#ifdef SSE_OS
if(encoder->private_->cpuinfo.data.ia32.sse) {
if(encoder->protected_->max_lpc_order < 4)
encoder->private_->local_lpc_compute_autocorrelation = lpc_compute_autocorrelation_asm_ia32_sse_lag_4;
else if(encoder->protected_->max_lpc_order < 8)
encoder->private_->local_lpc_compute_autocorrelation = lpc_compute_autocorrelation_asm_ia32_sse_lag_8;
else if(encoder->protected_->max_lpc_order < 12)
encoder->private_->local_lpc_compute_autocorrelation = lpc_compute_autocorrelation_asm_ia32_sse_lag_12;
else
encoder->private_->local_lpc_compute_autocorrelation = lpc_compute_autocorrelation_asm_ia32;
}
else
#endif
if(encoder->private_->cpuinfo.data.ia32._3dnow)
encoder->private_->local_lpc_compute_autocorrelation = lpc_compute_autocorrelation_asm_ia32_3dnow;
else
encoder->private_->local_lpc_compute_autocorrelation = lpc_compute_autocorrelation_asm_ia32;
if(encoder->private_->cpuinfo.data.ia32.mmx && encoder->private_->cpuinfo.data.ia32.cmov)
encoder->private_->local_fixed_compute_best_predictor = fixed_compute_best_predictor_asm_ia32_mmx_cmov;
if(encoder->private_->cpuinfo.data.ia32.mmx) {
encoder->private_->local_lpc_compute_residual_from_qlp_coefficients = lpc_compute_residual_from_qlp_coefficients_asm_ia32;
encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit = lpc_compute_residual_from_qlp_coefficients_asm_ia32_mmx;
}
else {
encoder->private_->local_lpc_compute_residual_from_qlp_coefficients = lpc_compute_residual_from_qlp_coefficients_asm_ia32;
encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit = lpc_compute_residual_from_qlp_coefficients_asm_ia32;
}
#endif
#endif
}
#endif
// finally override based on wide-ness if necessary
if(encoder->private_->use_wide_by_block) {
encoder->private_->local_fixed_compute_best_predictor = fixed_compute_best_predictor_wide;
}
// we require precompute_partition_sums if do_escape_coding because of their intertwined nature
encoder->private_->precompute_partition_sums = (encoder->protected_->max_residual_partition_order > encoder->protected_->min_residual_partition_order) || encoder->protected_->do_escape_coding;
if(!resize_buffers_(encoder->protected_->blocksize)) {
// the above function sets the state for us in case of an error
return encoder->protected_->state;
}
if(!bitbuffer_init(encoder->private_->frame))
return encoder->protected_->state = STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
// Set up the verify stuff if necessary
if(encoder->protected_->verify) {
// First, set up the fifo which will hold the original signal to compare against
encoder->private_->verify.input_fifo.size = encoder->protected_->blocksize;
for(i = 0; i < encoder->protected_->channels; i++) {
if(0 == (encoder->private_->verify.input_fifo.data[i] = (int*)malloc(sizeof(int) * encoder->private_->verify.input_fifo.size)))
return encoder->protected_->state = STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
}
encoder->private_->verify.input_fifo.tail = 0;
// Now set up a stream decoder for verification
encoder->private_->verify.decoder = stream_decoder_new();
if(0 == encoder->private_->verify.decoder)
return encoder->protected_->state = STREAM_ENCODER_VERIFY_DECODER_ERROR;
stream_decoder_set_read_callback(encoder->private_->verify.decoder, verify_read_callback_);
stream_decoder_set_write_callback(encoder->private_->verify.decoder, verify_write_callback_);
stream_decoder_set_metadata_callback(encoder->private_->verify.decoder, verify_metadata_callback_);
stream_decoder_set_error_callback(encoder->private_->verify.decoder, verify_error_callback_);
stream_decoder_set_client_data(encoder->private_->verify.decoder, encoder);
if(stream_decoder_init(encoder->private_->verify.decoder) != STREAM_DECODER_SEARCH_FOR_METADATA)
return encoder->protected_->state = STREAM_ENCODER_VERIFY_DECODER_ERROR;
}
encoder->private_->verify.error_stats.absolute_sample = 0;
encoder->private_->verify.error_stats.frame_number = 0;
encoder->private_->verify.error_stats.channel = 0;
encoder->private_->verify.error_stats.sample = 0;
encoder->private_->verify.error_stats.expected = 0;
encoder->private_->verify.error_stats.got = 0;
// write the stream header
if(encoder->protected_->verify)
encoder->private_->verify.state_hint = ENCODER_IN_MAGIC;
if(!bitbuffer_write_raw_uint32(encoder->private_->frame, STREAM_SYNC, STREAM_SYNC_LEN))
return encoder->protected_->state = STREAM_ENCODER_FRAMING_ERROR;
if(!write_bitbuffer_(0)) {
// the above function sets the state for us in case of an error
return encoder->protected_->state;
}
//write the STREAMINFO metadata block
if(encoder->protected_->verify)
encoder->private_->verify.state_hint = ENCODER_IN_METADATA;
encoder->private_->metadata.type = METADATA_TYPE_STREAMINFO;
encoder->private_->metadata.is_last = false; // we will have at a minimum a VORBIS_COMMENT afterwards
encoder->private_->metadata.length = STREAM_METADATA_STREAMINFO_LENGTH;
encoder->private_->metadata.data.stream_info.min_blocksize = encoder->protected_->blocksize; // this encoder uses the same blocksize for the whole stream
encoder->private_->metadata.data.stream_info.max_blocksize = encoder->protected_->blocksize;
encoder->private_->metadata.data.stream_info.min_framesize = 0; // we don't know this yet; have to fill it in later
encoder->private_->metadata.data.stream_info.max_framesize = 0; // we don't know this yet; have to fill it in later
encoder->private_->metadata.data.stream_info.sample_rate = encoder->protected_->sample_rate;
encoder->private_->metadata.data.stream_info.channels = encoder->protected_->channels;
encoder->private_->metadata.data.stream_info.bits_per_sample = encoder->protected_->bits_per_sample;
encoder->private_->metadata.data.stream_info.total_samples = encoder->protected_->total_samples_estimate; // we will replace this later with the real total
memset(encoder->private_->metadata.data.stream_info.md5sum, 0, 16); // we don't know this yet; have to fill it in later
MD5Init(&encoder->private_->md5context);
if(!bitbuffer_clear(encoder->private_->frame))
return encoder->protected_->state = STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
if(!add_metadata_block(&encoder->private_->metadata, encoder->private_->frame))
return encoder->protected_->state = STREAM_ENCODER_FRAMING_ERROR;
if(!write_bitbuffer_(0)) {
// the above function sets the state for us in case of an error
return encoder->protected_->state;
}
// Now that the STREAMINFO block is written, we can init this to an absurdly-high value...
encoder->private_->metadata.data.stream_info.min_framesize = (1u << STREAM_METADATA_STREAMINFO_MIN_FRAME_SIZE_LEN) - 1;
// ... and clear this to 0
encoder->private_->metadata.data.stream_info.total_samples = 0;
// Check to see if the supplied metadata contains a VORBIS_COMMENT;
// if not, we will write an empty one (add_metadata_block()
// automatically supplies the vendor string).
if(!metadata_has_vorbis_comment) {
StreamMetadata vorbis_comment;
vorbis_comment.type = METADATA_TYPE_VORBIS_COMMENT;
vorbis_comment.is_last = (encoder->protected_->num_metadata_blocks == 0);
vorbis_comment.length = 4 + 4; // MAGIC NUMBER
vorbis_comment.data.vorbis_comment.vendor_string.length = 0;
vorbis_comment.data.vorbis_comment.vendor_string.entry = 0;
vorbis_comment.data.vorbis_comment.num_comments = 0;
vorbis_comment.data.vorbis_comment.comments = 0;
if(!bitbuffer_clear(encoder->private_->frame))
return encoder->protected_->state = STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
if(!add_metadata_block(&vorbis_comment, encoder->private_->frame))
return encoder->protected_->state = STREAM_ENCODER_FRAMING_ERROR;
if(!write_bitbuffer_(0)) {
// the above function sets the state for us in case of an error
return encoder->protected_->state;
}
}
// write the user's metadata blocks
for(i = 0; i < encoder->protected_->num_metadata_blocks; i++) {
encoder->protected_->metadata[i]->is_last = (i == encoder->protected_->num_metadata_blocks - 1);
if(!bitbuffer_clear(encoder->private_->frame))
return encoder->protected_->state = STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
if(!add_metadata_block(encoder->protected_->metadata[i], encoder->private_->frame))
return encoder->protected_->state = STREAM_ENCODER_FRAMING_ERROR;
if(!write_bitbuffer_(0)) {
// the above function sets the state for us in case of an error
return encoder->protected_->state;
}
}
if(encoder->protected_->verify)
encoder->private_->verify.state_hint = ENCODER_IN_AUDIO;
return encoder->protected_->state;
}
*/
/*
void stream_encoder_finish(StreamEncoder *encoder)
{
ASSERT(0 != encoder);
if(encoder->protected_->state == STREAM_ENCODER_UNINITIALIZED)
return;
if(encoder->protected_->state == STREAM_ENCODER_OK && !encoder->private_->is_being_deleted) {
if(encoder->private_->current_sample_number != 0) {
encoder->protected_->blocksize = encoder->private_->current_sample_number;
process_frame_(true); // true => is last frame
}
}
MD5Final(encoder->private_->metadata.data.stream_info.md5sum, &encoder->private_->md5context);
if(encoder->protected_->state == STREAM_ENCODER_OK && !encoder->private_->is_being_deleted) {
encoder->private_->metadata_callback(&encoder->private_->metadata, encoder->private_->client_data);
}
if(encoder->protected_->verify && 0 != encoder->private_->verify.decoder)
stream_decoder_finish(encoder->private_->verify.decoder);
free_(encoder);
set_defaults_(encoder);
encoder->protected_->state = STREAM_ENCODER_UNINITIALIZED;
}
*/
public void setVerify(boolean value) {
if (state != STREAM_ENCODER_UNINITIALIZED) return;
verify = value;
}
public void setStreamableSubset(boolean value) {
if (state != STREAM_ENCODER_UNINITIALIZED) return;
streamable_subset = value;
}
public void setDoMidSideStereo(boolean value) {
if (state != STREAM_ENCODER_UNINITIALIZED) return;
do_mid_side_stereo = value;
}
public void setLooseMidSideStereo(boolean value) {
if (state != STREAM_ENCODER_UNINITIALIZED) return;
loose_mid_side_stereo = value;
}
public void setChannels(int value) {
if (state != STREAM_ENCODER_UNINITIALIZED) return;
channels = value;
}
public void setBitsPerSample(int value) {
if (state != STREAM_ENCODER_UNINITIALIZED) return;
bits_per_sample = value;
}
public void setSampleRate(int value) {
if (state != STREAM_ENCODER_UNINITIALIZED) return;
sample_rate = value;
}
public void setBlocksize(int value) {
if (state != STREAM_ENCODER_UNINITIALIZED) return;
blocksize = value;
}
public void setMaxLPCOrder(int value) {
if (state != STREAM_ENCODER_UNINITIALIZED) return;
max_lpc_order = value;
}
public void setQLPCoeffPrecision(int value) {
if (state != STREAM_ENCODER_UNINITIALIZED) return;
qlp_coeff_precision = value;
}
public void setDoQLPCoeffPrecSearch(boolean value) {
if (state != STREAM_ENCODER_UNINITIALIZED) return;
do_qlp_coeff_prec_search = value;
}
public void setDoExhaustiveModelSearch(boolean value) {
if (state != STREAM_ENCODER_UNINITIALIZED) return;
do_exhaustive_model_search = value;
}
public void setMinResidualPartitionOrder(int value) {
if (state != STREAM_ENCODER_UNINITIALIZED) return;
min_residual_partition_order = value;
}
public void setMaxResidualPartitionOrder(int value) {
if (state != STREAM_ENCODER_UNINITIALIZED) return;
max_residual_partition_order = value;
}
public void setTotalSamplesEstimate(long value) {
if (state != STREAM_ENCODER_UNINITIALIZED) return;
total_samples_estimate = value;
}
/*
public void set_metadata(StreamMetadata **metadata, int num_blocks) {
if (state != STREAM_ENCODER_UNINITIALIZED) return;
metadata = metadata;
num_metadata_blocks = num_blocks;
}
*/
/*
boolean set_write_callback(StreamEncoderWriteCallback value)
{
ASSERT(0 != encoder);
ASSERT(0 != value);
if (state != STREAM_ENCODER_UNINITIALIZED)
return false;
encoder->private_->write_callback = value;
return true;
}
*/
/*
boolean set_metadata_callback(StreamEncoderMetadataCallback value)
{
ASSERT(0 != encoder);
ASSERT(0 != value);
if (state != STREAM_ENCODER_UNINITIALIZED)
return false;
encoder->private_->metadata_callback = value;
return true;
}
*/
/*
boolean set_client_data(void *value)
{
ASSERT(0 != encoder);
if (state != STREAM_ENCODER_UNINITIALIZED)
return false;
encoder->private_->client_data = value;
return true;
}
*/
/*
* These three functions are not static, but not publically exposed in
* include/FLAC/ either. They are used by the test suite.
*/
public void disableConstantSubframes(boolean value) {
if (state != STREAM_ENCODER_UNINITIALIZED) return;
disable_constant_subframes = value;
}
public void disableFixedSubframes(boolean value) {
if (state != STREAM_ENCODER_UNINITIALIZED) return;
disable_fixed_subframes = value;
}
public void disableVerbatimSubframes(boolean value) {
if (state != STREAM_ENCODER_UNINITIALIZED) return;
disable_verbatim_subframes = value;
}
public int getState() {
return state;
}
/*
public int getVerifyDecoderState() {
if (verify)
return stream_decoder_get_state(verify.decoder);
else
return STREAM_DECODER_UNINITIALIZED;
}
*/
/*
char *get_resolved_state_string(StreamEncoder *encoder)
{
if (state != STREAM_ENCODER_VERIFY_DECODER_ERROR)
return StreamEncoderStateString[state];
else
return StreamDecoderStateString[stream_decoder_get_state(verify.decoder)];
}
*/
/*
void get_verify_decoder_error_stats(StreamEncoder *encoder, uint64 *absolute_sample, unsigned *frame_number, unsigned *channel, unsigned *sample, int *expected, int *got)
{
ASSERT(0 != encoder);
if (0 != absolute_sample)
*absolute_sample = verify.error_stats.absolute_sample;
if (0 != frame_number)
*frame_number = verify.error_stats.frame_number;
if (0 != channel)
*channel = verify.error_stats.channel;
if (0 != sample)
*sample = verify.error_stats.sample;
if (0 != expected)
*expected = verify.error_stats.expected;
if (0 != got)
*got = verify.error_stats.got;
}
*/
public boolean getVerify() {
return verify;
}
public boolean getStreamableSubset() {
return streamable_subset;
}
public boolean getDoMidSideStereo() {
return do_mid_side_stereo;
}
public boolean getLooseMidSideStereo() {
return loose_mid_side_stereo;
}
public int getChannels() {
return channels;
}
public int getBitsPerSample() {
return bits_per_sample;
}
public int getSampleRate() {
return sample_rate;
}
public int getBlocksize() {
return blocksize;
}
public int getMaxLPCOrder() {
return max_lpc_order;
}
public int getQLPCoeffPrecision() {
return qlp_coeff_precision;
}
public boolean getDoQLPCoeffPrecSearch() {
return do_qlp_coeff_prec_search;
}
public boolean getDoEscapeCoding() {
return do_escape_coding;
}
public boolean getDoExhaustiveModelSearch() {
return do_exhaustive_model_search;
}
public int getMinResidualPartitionOrder() {
return min_residual_partition_order;
}
public int getMaxResidualPartitionOrder() {
return max_residual_partition_order;
}
public int getRiceParameterSearchDist() {
return rice_parameter_search_dist;
}
public long getTotalSamplesEstimate() {
return total_samples_estimate;
}
/*
public boolean process(int * buffer[], unsigned samples)
{
unsigned i, j, channel;
int x, mid, side;
int channels = channels, blocksize = blocksize;
ASSERT(0 != encoder);
ASSERT(state == STREAM_ENCODER_OK);
j = 0;
if (do_mid_side_stereo && channels == 2) {
do {
if (verify)
append_to_verify_fifo_(&verify.input_fifo, buffer, j, channels, min(blocksize-current_sample_number, samples-j));
for(i = current_sample_number; i < blocksize && j < samples; i++, j++) {
x = mid = side = buffer[0][j];
integer_signal[0][i] = x;
real_signal[0][i] = (double)x;
x = buffer[1][j];
integer_signal[1][i] = x;
real_signal[1][i] = (double)x;
mid += x;
side -= x;
mid >>= 1; // NOTE: not the same as 'mid = (buffer[0][j] + buffer[1][j]) / 2' !
integer_signal_mid_side[1][i] = side;
integer_signal_mid_side[0][i] = mid;
real_signal_mid_side[1][i] = (double)side;
real_signal_mid_side[0][i] = (double)mid;
current_sample_number++;
}
if (i == blocksize) {
if (!process_frame_(false)) // false => not last frame
return false;
}
} while(j < samples);
}
else {
do {
if (verify)
append_to_verify_fifo_(&verify.input_fifo, buffer, j, channels, min(blocksize-current_sample_number, samples-j));
for(i = current_sample_number; i < blocksize && j < samples; i++, j++) {
for(channel = 0; channel < channels; channel++) {
x = buffer[channel][j];
integer_signal[channel][i] = x;
real_signal[channel][i] = (double)x;
}
current_sample_number++;
}
if (i == blocksize) {
if (!process_frame_(false)) // false => not last frame
return false;
}
} while(j < samples);
}
return true;
}
*/
/*
public boolean process_interleaved(int[] buffer, int samples) {
int i, j, k, channel;
int x, mid, side;
int channels = channels, blocksize = blocksize;
j = k = 0;
if (do_mid_side_stereo && channels == 2) {
do {
if (verify)
appendToVerifyFifoInterleaved(verifyData.input_fifo, buffer, j, channels, Math.min(blocksize-current_sample_number, samples-j));
for(i = current_sample_number; i < blocksize && j < samples; i++, j++) {
x = mid = side = buffer[k++];
integer_signal[0][i] = x;
real_signal[0][i] = (double)x;
x = buffer[k++];
integer_signal[1][i] = x;
real_signal[1][i] = (double)x;
mid += x;
side -= x;
mid >>= 1; // NOTE: not the same as 'mid = (left + right) / 2' !
integer_signal_mid_side[1][i] = side;
integer_signal_mid_side[0][i] = mid;
real_signal_mid_side[1][i] = (double)side;
real_signal_mid_side[0][i] = (double)mid;
current_sample_number++;
}
if (i == blocksize) {
if (!processFrame(false)) // false => not last frame
return false;
}
} while(j < samples);
}
else {
do {
if (verify)
appendToVerifyFifoInterleaved(verifyData.input_fifo, buffer, j, channels, Math.min(blocksize-current_sample_number, samples-j));
for(i = current_sample_number; i < blocksize && j < samples; i++, j++) {
for(channel = 0; channel < channels; channel++) {
x = buffer[k++];
integer_signal[channel][i] = x;
real_signal[channel][i] = (double)x;
}
current_sample_number++;
}
if (i == blocksize) {
if (!processFrame(false)) // false => not last frame
return false;
}
} while(j < samples);
}
return true;
}
*/
/***********************************************************************
*
* Private class methods
*
***********************************************************************/
public void setDefaults() {
verify = false;
streamable_subset = true;
do_mid_side_stereo = false;
loose_mid_side_stereo = false;
channels = 2;
bits_per_sample = 16;
sample_rate = 44100;
blocksize = 1152;
max_lpc_order = 0;
qlp_coeff_precision = 0;
do_qlp_coeff_prec_search = false;
do_exhaustive_model_search = false;
do_escape_coding = false;
min_residual_partition_order = 0;
max_residual_partition_order = 0;
rice_parameter_search_dist = 0;
total_samples_estimate = 0;
//metadata = null;
num_metadata_blocks = 0;
disable_constant_subframes = false;
disable_fixed_subframes = false;
disable_verbatim_subframes = false;
//write_callback = 0;
//metadata_callback = 0;
//client_data = 0;
}
/*
void free_()
{
unsigned i, channel;
ASSERT(0 != encoder);
for(i = 0; i < channels; i++) {
if (0 != integer_signal_unaligned[i]) {
free(integer_signal_unaligned[i]);
integer_signal_unaligned[i] = 0;
}
if (0 != real_signal_unaligned[i]) {
free(real_signal_unaligned[i]);
real_signal_unaligned[i] = 0;
}
}
for(i = 0; i < 2; i++) {
if (0 != integer_signal_mid_side_unaligned[i]) {
free(integer_signal_mid_side_unaligned[i]);
integer_signal_mid_side_unaligned[i] = 0;
}
if (0 != real_signal_mid_side_unaligned[i]) {
free(real_signal_mid_side_unaligned[i]);
real_signal_mid_side_unaligned[i] = 0;
}
}
for(channel = 0; channel < channels; channel++) {
for(i = 0; i < 2; i++) {
if (0 != residual_workspace_unaligned[channel][i]) {
free(residual_workspace_unaligned[channel][i]);
residual_workspace_unaligned[channel][i] = 0;
}
}
}
for(channel = 0; channel < 2; channel++) {
for(i = 0; i < 2; i++) {
if (0 != residual_workspace_mid_side_unaligned[channel][i]) {
free(residual_workspace_mid_side_unaligned[channel][i]);
residual_workspace_mid_side_unaligned[channel][i] = 0;
}
}
}
if (0 != abs_residual_unaligned) {
free(abs_residual_unaligned);
abs_residual_unaligned = 0;
}
if (0 != abs_residual_partition_sums_unaligned) {
free(abs_residual_partition_sums_unaligned);
abs_residual_partition_sums_unaligned = 0;
}
if (0 != raw_bits_per_partition_unaligned) {
free(raw_bits_per_partition_unaligned);
raw_bits_per_partition_unaligned = 0;
}
if (verify) {
for(i = 0; i < channels; i++) {
if (0 != verifyData.input_fifo.data[i]) {
free(verifyData.input_fifo.data[i]);
verifyData.input_fifo.data[i] = 0;
}
}
}
bitbuffer_free(frame);
}
*/
/*
private boolean resize_buffers_(int new_size) {
boolean ok;
int i, channel;
// To avoid excessive malloc'ing, we only grow the buffer; no shrinking.
if (new_size <= input_capacity) return true;
ok = true;
// WATCHOUT: lpc_compute_residual_from_qlp_coefficients_asm_ia32_mmx()
// requires that the input arrays (in our case the integer signals)
// have a buffer of up to 3 zeroes in front (at negative indices) for
// alignment purposes; we use 4 to keep the data well-aligned.
for(i = 0; ok && i < channels; i++) {
ok = ok && memory_alloc_aligned_int32_array(new_size+4, integer_signal_unaligned[i], integer_signal[i]);
ok = ok && memory_alloc_aligned_real_array(new_size, real_signal_unaligned[i], real_signal[i]);
memset(integer_signal[i], 0, sizeof(int)*4);
integer_signal[i] += 4;
}
for(i = 0; ok && i < 2; i++) {
ok = ok && memory_alloc_aligned_int32_array(new_size+4, &integer_signal_mid_side_unaligned[i], &integer_signal_mid_side[i]);
ok = ok && memory_alloc_aligned_real_array(new_size, &real_signal_mid_side_unaligned[i], &real_signal_mid_side[i]);
memset(integer_signal_mid_side[i], 0, sizeof(int)*4);
integer_signal_mid_side[i] += 4;
}
for(channel = 0; ok && channel < channels; channel++) {
for(i = 0; ok && i < 2; i++) {
ok = ok && memory_alloc_aligned_int32_array(new_size, &residual_workspace_unaligned[channel][i], &residual_workspace[channel][i]);
}
}
for(channel = 0; ok && channel < 2; channel++) {
for(i = 0; ok && i < 2; i++) {
ok = ok && memory_alloc_aligned_int32_array(new_size, &residual_workspace_mid_side_unaligned[channel][i], &residual_workspace_mid_side[channel][i]);
}
}
ok = ok && memory_alloc_aligned_uint32_array(new_size, &abs_residual_unaligned, &abs_residual);
if (precompute_partition_sums || do_escape_coding) // we require precompute_partition_sums if do_escape_coding because of their intertwined nature
ok = ok && memory_alloc_aligned_uint64_array(new_size * 2, &abs_residual_partition_sums_unaligned, &abs_residual_partition_sums);
if (do_escape_coding)
ok = ok && memory_alloc_aligned_unsigned_array(new_size * 2, &raw_bits_per_partition_unaligned, &raw_bits_per_partition);
if (ok)
input_capacity = new_size;
else
state = STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
return ok;
}
*/
/*
private boolean writeBitBuffer(int samples) {
byte[] buffer;
unsigned bytes;
bitbuffer_get_buffer(frame, &buffer, &bytes);
if (verify) {
verifyData.output.data = buffer;
verifyData.output.bytes = bytes;
if (verifyData.state_hint == ENCODER_IN_MAGIC) {
verifyData.needs_magic_hack = true;
}
else {
if (!stream_decoder_process_single(verifyData.decoder)) {
bitbuffer_release_buffer(frame);
if (state != STREAM_ENCODER_VERIFY_MISMATCH_IN_AUDIO_DATA)
state = STREAM_ENCODER_VERIFY_DECODER_ERROR;
return false;
}
}
}
if (write_callback(buffer, bytes, samples, current_frame_number, client_data) != STREAM_ENCODER_WRITE_STATUS_OK) {
bitbuffer_release_buffer(frame);
state = STREAM_ENCODER_FATAL_ERROR_WHILE_WRITING;
return false;
}
bitbuffer_release_buffer(frame);
if (samples > 0) {
metadata.data.stream_info.min_framesize = min(bytes, metadata.data.stream_info.min_framesize);
metadata.data.stream_info.max_framesize = max(bytes, metadata.data.stream_info.max_framesize);
}
return true;
}
*/
/*
private boolean processFrame(boolean is_last_frame) {
// Accumulate raw signal to the MD5 signature
if (!MD5Accumulate(&md5context, (int * *)integer_signal, channels, blocksize, (bits_per_sample+7) / 8)) {
state = STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
return false;
}
// Process the frame header and subframes into the frame bitbuffer
if (!process_subframes_(is_last_frame)) {
// the above function sets the state for us in case of an error
return false;
}
// Zero-pad the frame to a byte_boundary
if (!bitbuffer_zero_pad_to_byte_boundary(frame)) {
state = STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
return false;
}
// CRC-16 the whole thing
ASSERT(bitbuffer_is_byte_aligned(frame));
bitbuffer_write_raw_uint32(frame, bitbuffer_get_write_crc16(frame), FRAME_FOOTER_CRC_LEN);
// Write it
if (!write_bitbuffer_(blocksize)) {
// the above function sets the state for us in case of an error
return false;
}
// Get ready for the next frame
current_sample_number = 0;
current_frame_number++;
metadata.data.stream_info.total_samples += (uint64)blocksize;
return true;
}
*/
/*
private boolean processSubframes(boolean is_last_frame) {
Header frame_header;
int channel, min_partition_order = min_residual_partition_order, max_partition_order;
boolean do_independent, do_mid_side, precompute_partition_sums;
// Calculate the min,max Rice partition orders
if (is_last_frame) {
max_partition_order = 0;
}
else {
max_partition_order = Frame.get_max_rice_partition_order_from_blocksize(blocksize);
max_partition_order = Math.min(max_partition_order, max_residual_partition_order);
}
min_partition_order = Math.min(min_partition_order, max_partition_order);
precompute_partition_sums = precompute_partition_sums && ((max_partition_order > min_partition_order) || do_escape_coding);
// Setup the frame
frame.clear();
frame_header.blockSize = blocksize;
frame_header.sampleRate = sample_rate;
frame_header.channels = channels;
frame_header.channelAssignment = Constants.CHANNEL_ASSIGNMENT_INDEPENDENT; // the default unless the encoder determines otherwise
frame_header.bitsPerSample = bits_per_sample;
frame_header.frameNumber = current_frame_number;
// Figure out what channel assignments to try
if (do_mid_side_stereo) {
if (loose_mid_side_stereo) {
if (loose_mid_side_stereo_frame_count == 0) {
do_independent = true;
do_mid_side = true;
}
else {
do_independent = (last_channel_assignment == Constants.CHANNEL_ASSIGNMENT_INDEPENDENT);
do_mid_side = !do_independent;
}
}
else {
do_independent = true;
do_mid_side = true;
}
}
else {
do_independent = true;
do_mid_side = false;
}
// Check for wasted bits; set effective bps for each subframe
if (do_independent) {
for(channel = 0; channel < channels; channel++) {
int w = get_wasted_bits_(integer_signal[channel], blocksize);
subframe_workspace[channel][0].wasted_bits = subframe_workspace[channel][1].wasted_bits = w;
subframe_bps[channel] = bits_per_sample - w;
}
}
if (do_mid_side) {
ASSERT(channels == 2);
for(channel = 0; channel < 2; channel++) {
unsigned w = get_wasted_bits_(integer_signal_mid_side[channel], blocksize);
subframe_workspace_mid_side[channel][0].wasted_bits = subframe_workspace_mid_side[channel][1].wasted_bits = w;
subframe_bps_mid_side[channel] = bits_per_sample - w + (channel==0? 0:1);
}
}
// First do a normal encoding pass of each independent channel
if (do_independent) {
for(channel = 0; channel < channels; channel++) {
if (!
process_subframe_(
encoder,
min_partition_order,
max_partition_order,
precompute_partition_sums,
frame_header,
subframe_bps[channel],
integer_signal[channel],
real_signal[channel],
subframe_workspace_ptr[channel],
partitioned_rice_contents_workspace_ptr[channel],
residual_workspace[channel],
best_subframe+channel,
best_subframe_bits+channel
)
)
return false;
}
}
// Now do mid and side channels if requested
if (do_mid_side) {
for(channel = 0; channel < 2; channel++) {
if (!
process_subframe_(
encoder,
min_partition_order,
max_partition_order,
precompute_partition_sums,
frame_header,
subframe_bps_mid_side[channel],
integer_signal_mid_side[channel],
real_signal_mid_side[channel],
subframe_workspace_ptr_mid_side[channel],
partitioned_rice_contents_workspace_ptr_mid_side[channel],
residual_workspace_mid_side[channel],
best_subframe_mid_side+channel,
best_subframe_bits_mid_side+channel
)
)
return false;
}
}
// Compose the frame bitbuffer
if (do_mid_side) {
unsigned left_bps = 0, right_bps = 0; // initialized only to prevent superfluous compiler warning
ChannelBase left_subframe, right_subframe; // initialized only to prevent superfluous compiler warning
ChannelAssignment channel_assignment;
if (loose_mid_side_stereo && loose_mid_side_stereo_frame_count > 0) {
channel_assignment = (last_channel_assignment == CHANNEL_ASSIGNMENT_INDEPENDENT? CHANNEL_ASSIGNMENT_INDEPENDENT : CHANNEL_ASSIGNMENT_MID_SIDE);
}
else {
int[] bits = new int[4]; // WATCHOUT - indexed by ChannelAssignment
int min_bits;
int ca;
// We have to figure out which channel assignent results in the smallest frame
bits[CHANNEL_ASSIGNMENT_INDEPENDENT] = best_subframe_bits [0] + best_subframe_bits [1];
bits[CHANNEL_ASSIGNMENT_LEFT_SIDE ] = best_subframe_bits [0] + best_subframe_bits_mid_side[1];
bits[CHANNEL_ASSIGNMENT_RIGHT_SIDE ] = best_subframe_bits [1] + best_subframe_bits_mid_side[1];
bits[CHANNEL_ASSIGNMENT_MID_SIDE ] = best_subframe_bits_mid_side[0] + best_subframe_bits_mid_side[1];
for(channel_assignment = (ChannelAssignment)0, min_bits = bits[0], ca = (ChannelAssignment)1; (int)ca <= 3; ca = (ChannelAssignment)((int)ca + 1)) {
if (bits[ca] < min_bits) {
min_bits = bits[ca];
channel_assignment = ca;
}
}
}
frame_header.channel_assignment = channel_assignment;
if (!frame_add_header(frame_header, streamable_subset, is_last_frame, frame)) {
state = STREAM_ENCODER_FRAMING_ERROR;
return false;
}
switch(channel_assignment) {
case CHANNEL_ASSIGNMENT_INDEPENDENT:
left_subframe = subframe_workspace [0][best_subframe [0]];
right_subframe = subframe_workspace [1][best_subframe [1]];
break;
case CHANNEL_ASSIGNMENT_LEFT_SIDE:
left_subframe = subframe_workspace [0][best_subframe [0]];
right_subframe = subframe_workspace_mid_side[1][best_subframe_mid_side[1]];
break;
case CHANNEL_ASSIGNMENT_RIGHT_SIDE:
left_subframe = subframe_workspace_mid_side[1][best_subframe_mid_side[1]];
right_subframe = subframe_workspace [1][best_subframe [1]];
break;
case CHANNEL_ASSIGNMENT_MID_SIDE:
left_subframe = subframe_workspace_mid_side[0][best_subframe_mid_side[0]];
right_subframe = subframe_workspace_mid_side[1][best_subframe_mid_side[1]];
break;
default:
ASSERT(0);
}
switch(channel_assignment) {
case CHANNEL_ASSIGNMENT_INDEPENDENT:
left_bps = subframe_bps [0];
right_bps = subframe_bps [1];
break;
case CHANNEL_ASSIGNMENT_LEFT_SIDE:
left_bps = subframe_bps [0];
right_bps = subframe_bps_mid_side[1];
break;
case CHANNEL_ASSIGNMENT_RIGHT_SIDE:
left_bps = subframe_bps_mid_side[1];
right_bps = subframe_bps [1];
break;
case CHANNEL_ASSIGNMENT_MID_SIDE:
left_bps = subframe_bps_mid_side[0];
right_bps = subframe_bps_mid_side[1];
break;
default:
ASSERT(0);
}
// note that encoder_add_subframe_ sets the state for us in case of an error
if (!add_subframe_(frame_header, left_bps , left_subframe , frame))
return false;
if (!add_subframe_(frame_header, right_bps, right_subframe, frame))
return false;
}
else {
if (!frame_add_header(frame_header, streamable_subset, is_last_frame, frame)) {
state = STREAM_ENCODER_FRAMING_ERROR;
return false;
}
for(channel = 0; channel < channels; channel++) {
if (!add_subframe_(frame_header, subframe_bps[channel], subframe_workspace[channel][best_subframe[channel]], frame)) {
// the above function sets the state for us in case of an error
return false;
}
}
}
if (loose_mid_side_stereo) {
loose_mid_side_stereo_frame_count++;
if (loose_mid_side_stereo_frame_count >= loose_mid_side_stereo_frames)
loose_mid_side_stereo_frame_count = 0;
}
last_channel_assignment = frame_header.channel_assignment;
return true;
}
*/
/*
private boolean processSubframe(int min_partition_order,
int max_partition_order,
boolean precompute_partition_sums,
Header frame_header,
int subframe_bps,
int[] integer_signal,
double[] real_signal,
Subframe[] subframe],
EntropyPartitionedRiceContents[] partitioned_rice_contents,
int[] residual,
int *best_subframe,
int *best_bits
)
{
double[] fixed_residual_bits_per_sample = new double[MAX_FIXED_ORDER+1];
double lpc_residual_bits_per_sample;
double[] autoc = new double[MAX_LPC_ORDER+1]; // WATCHOUT: the size is important even though max_lpc_order might be less; some asm routines need all the space
double[] lpc_error = new double[MAX_LPC_ORDER];
int min_lpc_order, max_lpc_order, lpc_order;
int min_fixed_order, max_fixed_order, guess_fixed_order, fixed_order;
int min_qlp_coeff_precision, max_qlp_coeff_precision, qlp_coeff_precision;
int rice_parameter;
int _candidate_bits, _best_bits;
int _best_subframe;
// verbatim subframe is the baseline against which we measure other compressed subframes
_best_subframe = 0;
if (disable_verbatim_subframes && frame_header.blocksize >= MAX_FIXED_ORDER)
_best_bits = UINT_MAX;
else
_best_bits = evaluateVerbatimSubframe(integer_signal, frame_header.blocksize, subframe_bps, subframe[_best_subframe]);
if (frame_header.blocksize >= MAX_FIXED_ORDER) {
unsigned signal_is_constant = false;
guess_fixed_order = local_fixed_compute_best_predictor(integer_signal+MAX_FIXED_ORDER, frame_header.blocksize-MAX_FIXED_ORDER, fixed_residual_bits_per_sample);
// check for constant subframe
if (!disable_constant_subframes && fixed_residual_bits_per_sample[1] == 0.0) {
// the above means integer_signal+MAX_FIXED_ORDER is constant, now we just have to check the warmup samples
unsigned i;
signal_is_constant = true;
for(i = 1; i <= MAX_FIXED_ORDER; i++) {
if (integer_signal[0] != integer_signal[i]) {
signal_is_constant = false;
break;
}
}
}
if (signal_is_constant) {
_candidate_bits = evaluate_constant_subframe_(integer_signal[0], subframe_bps, subframe[!_best_subframe]);
if (_candidate_bits < _best_bits) {
_best_subframe = !_best_subframe;
_best_bits = _candidate_bits;
}
}
else {
if (!disable_fixed_subframes || (max_lpc_order == 0 && _best_bits == UINT_MAX)) {
// encode fixed
if (do_exhaustive_model_search) {
min_fixed_order = 0;
max_fixed_order = MAX_FIXED_ORDER;
}
else {
min_fixed_order = max_fixed_order = guess_fixed_order;
}
for(fixed_order = min_fixed_order; fixed_order <= max_fixed_order; fixed_order++) {
if (fixed_residual_bits_per_sample[fixed_order] >= (double)subframe_bps)
continue; // don't even try
rice_parameter = (fixed_residual_bits_per_sample[fixed_order] > 0.0)? (unsigned)(fixed_residual_bits_per_sample[fixed_order]+0.5) : 0; // 0.5 is for rounding
rice_parameter++; // to account for the signed->unsigned conversion during rice coding
if (rice_parameter >= ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) {
fprintf(stderr, "clipping rice_parameter (%u -> %u) @0\n", rice_parameter, ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1);
rice_parameter = ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1;
}
_candidate_bits =
evaluate_fixed_subframe_(
encoder,
integer_signal,
residual[!_best_subframe],
abs_residual,
abs_residual_partition_sums,
raw_bits_per_partition,
frame_header.blocksize,
subframe_bps,
fixed_order,
rice_parameter,
min_partition_order,
max_partition_order,
precompute_partition_sums,
do_escape_coding,
rice_parameter_search_dist,
subframe[!_best_subframe],
partitioned_rice_contents[!_best_subframe]
);
if (_candidate_bits < _best_bits) {
_best_subframe = !_best_subframe;
_best_bits = _candidate_bits;
}
}
}
// encode lpc
if (max_lpc_order > 0) {
if (max_lpc_order >= frame_header.blocksize)
max_lpc_order = frame_header.blocksize-1;
else
max_lpc_order = max_lpc_order;
if (max_lpc_order > 0) {
local_lpc_compute_autocorrelation(real_signal, frame_header.blocksize, max_lpc_order+1, autoc);
// if autoc[0] == 0.0, the signal is constant and we usually won't get here, but it can happen
if (autoc[0] != 0.0) {
lpc_compute_lp_coefficients(autoc, max_lpc_order, lp_coeff, lpc_error);
if (do_exhaustive_model_search) {
min_lpc_order = 1;
}
else {
unsigned guess_lpc_order = lpc_compute_best_order(lpc_error, max_lpc_order, frame_header.blocksize, subframe_bps);
min_lpc_order = max_lpc_order = guess_lpc_order;
}
for(lpc_order = min_lpc_order; lpc_order <= max_lpc_order; lpc_order++) {
lpc_residual_bits_per_sample = lpc_compute_expected_bits_per_residual_sample(lpc_error[lpc_order-1], frame_header.blocksize-lpc_order);
if (lpc_residual_bits_per_sample >= (double)subframe_bps)
continue; // don't even try
rice_parameter = (lpc_residual_bits_per_sample > 0.0)? (unsigned)(lpc_residual_bits_per_sample+0.5) : 0; // 0.5 is for rounding
rice_parameter++; // to account for the signed->unsigned conversion during rice coding
if (rice_parameter >= ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) {
fprintf(stderr, "clipping rice_parameter (%u -> %u) @1\n", rice_parameter, ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1);
rice_parameter = ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1;
}
if (do_qlp_coeff_prec_search) {
min_qlp_coeff_precision = MIN_QLP_COEFF_PRECISION;
// ensure a 32-bit datapath throughout for 16bps or less
if (subframe_bps <= 16)
max_qlp_coeff_precision = min(32 - subframe_bps - lpc_order, MAX_QLP_COEFF_PRECISION);
else
max_qlp_coeff_precision = MAX_QLP_COEFF_PRECISION;
}
else {
min_qlp_coeff_precision = max_qlp_coeff_precision = qlp_coeff_precision;
}
for(qlp_coeff_precision = min_qlp_coeff_precision; qlp_coeff_precision <= max_qlp_coeff_precision; qlp_coeff_precision++) {
_candidate_bits =
evaluate_lpc_subframe_(
encoder,
integer_signal,
residual[!_best_subframe],
abs_residual,
abs_residual_partition_sums,
raw_bits_per_partition,
lp_coeff[lpc_order-1],
frame_header.blocksize,
subframe_bps,
lpc_order,
qlp_coeff_precision,
rice_parameter,
min_partition_order,
max_partition_order,
precompute_partition_sums,
do_escape_coding,
rice_parameter_search_dist,
subframe[!_best_subframe],
partitioned_rice_contents[!_best_subframe]
);
if (_candidate_bits > 0) { // if == 0, there was a problem quantizing the lpcoeffs
if (_candidate_bits < _best_bits) {
_best_subframe = !_best_subframe;
_best_bits = _candidate_bits;
}
}
}
}
}
}
}
}
}
// under rare circumstances this can happen when all but lpc subframe types are disabled:
if (_best_bits == UINT_MAX) {
ASSERT(_best_subframe == 0);
_best_bits = evaluateVerbatimSubframe(integer_signal, frame_header.blocksize, subframe_bps, subframe[_best_subframe]);
}
*best_subframe = _best_subframe;
*best_bits = _best_bits;
return true;
}
*/
/*
private boolean addSubframe(Header frame_header, int subframe_bps, ChannelBase subframe, BitBuffer frame) {
switch(subframe->type) {
case SUBFRAME_TYPE_CONSTANT:
if (!subframe_add_constant(&(subframe->data.constant), subframe_bps, subframe->wasted_bits, frame)) {
state = STREAM_ENCODER_FATAL_ERROR_WHILE_ENCODING;
return false;
}
break;
case SUBFRAME_TYPE_FIXED:
if (!subframe_add_fixed(&(subframe->data.fixed), frame_header.blocksize - subframe->data.fixed.order, subframe_bps, subframe->wasted_bits, frame)) {
state = STREAM_ENCODER_FATAL_ERROR_WHILE_ENCODING;
return false;
}
break;
case SUBFRAME_TYPE_LPC:
if (!subframe_add_lpc(&(subframe->data.lpc), frame_header.blocksize - subframe->data.lpc.order, subframe_bps, subframe->wasted_bits, frame)) {
state = STREAM_ENCODER_FATAL_ERROR_WHILE_ENCODING;
return false;
}
break;
case SUBFRAME_TYPE_VERBATIM:
if (!subframe_add_verbatim(&(subframe->data.verbatim), frame_header.blocksize, subframe_bps, subframe->wasted_bits, frame)) {
state = STREAM_ENCODER_FATAL_ERROR_WHILE_ENCODING;
return false;
}
break;
default:
ASSERT(0);
}
return true;
}
*/
/*
private int evaluateConstantSubframe(int signal, int subframe_bps, ChannelBase subframe) {
subframe->type = SUBFRAME_TYPE_CONSTANT;
subframe->data.constant.value = signal;
return SUBFRAME_ZERO_PAD_LEN + SUBFRAME_TYPE_LEN + SUBFRAME_WASTED_BITS_FLAG_LEN + subframe_bps;
}
*/
/*
private int evaluateFixedSubframe(int[] signal, int[] residual, int[] abs_residual, long[] abs_residual_partition_sums, int[] raw_bits_per_partition, int blocksize, int subframe_bps, int order, int rice_parameter, int min_partition_order, int max_partition_order, boolean precompute_partition_sums, boolean do_escape_coding, int rice_parameter_search_dist, ChannelBase subframe, EntropyPartitionedRiceContents partitioned_rice_contents) {
unsigned i, residual_bits;
unsigned residual_samples = blocksize - order;
fixed_compute_residual(signal+order, residual_samples, order, residual);
subframe->type = SUBFRAME_TYPE_FIXED;
subframe->data.fixed.entropy_coding_method.type = ENTROPY_CODING_METHOD_PARTITIONED_RICE;
subframe->data.fixed.entropy_coding_method.data.partitioned_rice.contents = partitioned_rice_contents;
subframe->data.fixed.residual = residual;
residual_bits =
find_best_partition_order_(
encoder->private_,
residual,
abs_residual,
abs_residual_partition_sums,
raw_bits_per_partition,
residual_samples,
order,
rice_parameter,
min_partition_order,
max_partition_order,
precompute_partition_sums,
do_escape_coding,
rice_parameter_search_dist,
&subframe->data.fixed.entropy_coding_method.data.partitioned_rice
);
subframe->data.fixed.order = order;
for(i = 0; i < order; i++)
subframe->data.fixed.warmup[i] = signal[i];
return SUBFRAME_ZERO_PAD_LEN + SUBFRAME_TYPE_LEN + SUBFRAME_WASTED_BITS_FLAG_LEN + (order * subframe_bps) + residual_bits;
}
*/
/*
private int evaluateLPCSubframe(int[] signal, int[] residual, int[] abs_residual, long[] abs_residual_partition_sums, int[] raw_bits_per_partition, double[] lp_coeff, int blocksize, int subframe_bps, int order, int qlp_coeff_precision, int rice_parameter, int min_partition_order, int max_partition_order, boolean precompute_partition_sums, boolean do_escape_coding, int rice_parameter_search_dist, ChannelBase subframe, EntropyPartitionedRiceContents partitioned_rice_contents) {
int[] qlp_coeff = new int[MAX_LPC_ORDER];
int i, residual_bits;
int quantization, ret;
int residual_samples = blocksize - order;
// try to keep qlp coeff precision such that only 32-bit math is required for decode of <=16bps streams
if (subframe_bps <= 16) {
ASSERT(order > 0);
ASSERT(order <= MAX_LPC_ORDER);
qlp_coeff_precision = min(qlp_coeff_precision, 32 - subframe_bps - bitmath_ilog2(order));
}
ret = lpc_quantize_coefficients(lp_coeff, order, qlp_coeff_precision, qlp_coeff, quantization);
if (ret != 0)
return 0; // this is a hack to indicate to the caller that we can't do lp at this order on this subframe
if (subframe_bps + qlp_coeff_precision + bitmath_ilog2(order) <= 32)
if (subframe_bps <= 16 && qlp_coeff_precision <= 16)
local_lpc_compute_residual_from_qlp_coefficients_16bit(signal+order, residual_samples, qlp_coeff, order, quantization, residual);
else
local_lpc_compute_residual_from_qlp_coefficients(signal+order, residual_samples, qlp_coeff, order, quantization, residual);
else
local_lpc_compute_residual_from_qlp_coefficients_64bit(signal+order, residual_samples, qlp_coeff, order, quantization, residual);
subframe->type = SUBFRAME_TYPE_LPC;
subframe->data.lpc.entropy_coding_method.type = ENTROPY_CODING_METHOD_PARTITIONED_RICE;
subframe->data.lpc.entropy_coding_method.data.partitioned_rice.contents = partitioned_rice_contents;
subframe->data.lpc.residual = residual;
residual_bits =
find_best_partition_order_(
encoder->private_,
residual,
abs_residual,
abs_residual_partition_sums,
raw_bits_per_partition,
residual_samples,
order,
rice_parameter,
min_partition_order,
max_partition_order,
precompute_partition_sums,
do_escape_coding,
rice_parameter_search_dist,
&subframe->data.fixed.entropy_coding_method.data.partitioned_rice
);
subframe->data.lpc.order = order;
subframe->data.lpc.qlp_coeff_precision = qlp_coeff_precision;
subframe->data.lpc.quantization_level = quantization;
memcpy(subframe->data.lpc.qlp_coeff, qlp_coeff, sizeof(int)*MAX_LPC_ORDER);
for(i = 0; i < order; i++)
subframe->data.lpc.warmup[i] = signal[i];
return SUBFRAME_ZERO_PAD_LEN + SUBFRAME_TYPE_LEN + SUBFRAME_WASTED_BITS_FLAG_LEN + SUBFRAME_LPC_QLP_COEFF_PRECISION_LEN + SUBFRAME_LPC_QLP_SHIFT_LEN + (order * (qlp_coeff_precision + subframe_bps)) + residual_bits;
}
*/
/*
private int evaluateVerbatimSubframe(int[] signal, int blocksize, int subframe_bps, ChannelVerbatim subframe) {
subframe.data = signal;
return SUBFRAME_ZERO_PAD_LEN + SUBFRAME_TYPE_LEN + SUBFRAME_WASTED_BITS_FLAG_LEN + (blocksize * subframe_bps);
}
*/
/*
private int findBestPartitionOrder(int[] residual, int[] abs_residual, long[] abs_residual_partition_sums, int[] raw_bits_per_partition, int residual_samples, int predictor_order, int rice_parameter, int min_partition_order, int max_partition_order, boolean precompute_partition_sums, boolean do_escape_coding, int rice_parameter_search_dist, EntropyPartitionedRice best_partitioned_rice) {
int r;
unsigned residual_bits, best_residual_bits = 0;
unsigned residual_sample;
unsigned best_parameters_index = 0;
unsigned blocksize = residual_samples + predictor_order;
// compute abs(residual) for use later
for(residual_sample = 0; residual_sample < residual_samples; residual_sample++) {
r = residual[residual_sample];
abs_residual[residual_sample] = (uint32)(r<0? -r : r);
}
max_partition_order = format_get_max_rice_partition_order_from_blocksize_limited_max_and_predictor_order(max_partition_order, blocksize, predictor_order);
min_partition_order = min(min_partition_order, max_partition_order);
if (precompute_partition_sums) {
int partition_order;
unsigned sum;
precompute_partition_info_sums_(abs_residual, abs_residual_partition_sums, residual_samples, predictor_order, min_partition_order, max_partition_order);
if (do_escape_coding)
precompute_partition_info_escapes_(residual, raw_bits_per_partition, residual_samples, predictor_order, min_partition_order, max_partition_order);
for(partition_order = (int)max_partition_order, sum = 0; partition_order >= (int)min_partition_order; partition_order--) {
if (!
set_partitioned_rice_with_precompute_(
abs_residual,
abs_residual_partition_sums+sum,
raw_bits_per_partition+sum,
residual_samples,
predictor_order,
rice_parameter,
rice_parameter_search_dist,
(unsigned)partition_order,
do_escape_coding,
&partitioned_rice_contents_extra[!best_parameters_index],
&residual_bits
)
)
{
ASSERT(best_residual_bits != 0);
break;
}
sum += 1 << partition_order;
if (best_residual_bits == 0 || residual_bits < best_residual_bits) {
best_residual_bits = residual_bits;
best_parameters_index = !best_parameters_index;
best_partitioned_rice.order = partition_order;
}
}
}
else {
unsigned partition_order;
for(partition_order = min_partition_order; partition_order <= max_partition_order; partition_order++) {
if (!
set_partitioned_rice_(
abs_residual,
residual_samples,
predictor_order,
rice_parameter,
rice_parameter_search_dist,
partition_order,
&partitioned_rice_contents_extra[!best_parameters_index],
&residual_bits
)
)
{
break;
}
if (best_residual_bits == 0 || residual_bits < best_residual_bits) {
best_residual_bits = residual_bits;
best_parameters_index = !best_parameters_index;
best_partitioned_rice.order = partition_order;
}
}
}
// We are allowed to de-the pointer based on our special knowledge; it is to the outside world.
{
EntropyPartitionedRiceContents best_partitioned_rice_contents = (EntropyPartitionedRiceContents)best_partitioned_rice->contents;
format_entropy_coding_method_partitioned_rice_contents_ensure_size(best_partitioned_rice_contents, max(6, best_partitioned_rice->order));
memcpy(best_partitioned_rice_contents->parameters, partitioned_rice_contents_extra[best_parameters_index].parameters, sizeof(unsigned)*(1<<(best_partitioned_rice->order)));
memcpy(best_partitioned_rice_contents->raw_bits, partitioned_rice_contents_extra[best_parameters_index].raw_bits, sizeof(unsigned)*(1<<(best_partitioned_rice->order)));
}
return best_residual_bits;
}
*/
/*
private void precomputePartitionInfoSums(
int[] abs_residual,
long[] abs_residual_partition_sums,
int residual_samples,
int predictor_order,
int min_partition_order,
int max_partition_order
)
{
int partition_order;
unsigned from_partition, to_partition = 0;
unsigned blocksize = residual_samples + predictor_order;
// first do max_partition_order
for(partition_order = (int)max_partition_order; partition_order >= 0; partition_order--) {
long abs_residual_partition_sum;
int abs_r;
int partition, partition_sample, partition_samples, residual_sample;
int partitions = 1 << partition_order;
int default_partition_samples = blocksize >> partition_order;
for(partition = residual_sample = 0; partition < partitions; partition++) {
partition_samples = default_partition_samples;
if (partition == 0)
partition_samples -= predictor_order;
abs_residual_partition_sum = 0;
for(partition_sample = 0; partition_sample < partition_samples; partition_sample++) {
abs_r = abs_residual[residual_sample];
abs_residual_partition_sum += abs_r;
residual_sample++;
}
abs_residual_partition_sums[partition] = abs_residual_partition_sum;
}
to_partition = partitions;
break;
}
// now merge partitions for lower orders
for(from_partition = 0, --partition_order; partition_order >= (int)min_partition_order; partition_order--) {
long s;
int i;
int partitions = 1 << partition_order;
for(i = 0; i < partitions; i++) {
s = abs_residual_partition_sums[from_partition];
from_partition++;
abs_residual_partition_sums[to_partition] = s + abs_residual_partition_sums[from_partition];
from_partition++;
to_partition++;
}
}
}
*/
/*
private void precomputePartitionInfoEscapes(
int[] residual,
int[] raw_bits_per_partition,
int residual_samples,
int predictor_order,
int min_partition_order,
int max_partition_order
)
{
int partition_order;
unsigned from_partition, to_partition = 0;
unsigned blocksize = residual_samples + predictor_order;
// first do max_partition_order
for(partition_order = (int)max_partition_order; partition_order >= 0; partition_order--) {
int r, residual_partition_min, residual_partition_max;
int silog2_min, silog2_max;
int partition, partition_sample, partition_samples, residual_sample;
int partitions = 1 << partition_order;
int default_partition_samples = blocksize >> partition_order;
for(partition = residual_sample = 0; partition < partitions; partition++) {
partition_samples = default_partition_samples;
if (partition == 0)
partition_samples -= predictor_order;
residual_partition_min = residual_partition_max = 0;
for(partition_sample = 0; partition_sample < partition_samples; partition_sample++) {
r = residual[residual_sample];
if (r < residual_partition_min)
residual_partition_min = r;
else if (r > residual_partition_max)
residual_partition_max = r;
residual_sample++;
}
silog2_min = bitmath_silog2(residual_partition_min);
silog2_max = bitmath_silog2(residual_partition_max);
raw_bits_per_partition[partition] = max(silog2_min, silog2_max);
}
to_partition = partitions;
break;
}
// now merge partitions for lower orders
for(from_partition = 0, --partition_order; partition_order >= (int)min_partition_order; partition_order--) {
int m;
int i;
int partitions = 1 << partition_order;
for(i = 0; i < partitions; i++) {
m = raw_bits_per_partition[from_partition];
from_partition++;
raw_bits_per_partition[to_partition] = max(m, raw_bits_per_partition[from_partition]);
from_partition++;
to_partition++;
}
}
}
*/
/*
private VARIABLE_RICE_BITS(value, parameter) { return ((value) >> (parameter)); }
boolean set_partitioned_rice_(
int[] abs_residual,
int residual_samples,
int predictor_order,
int suggested_rice_parameter,
int rice_parameter_search_dist,
int partition_order,
EntropyPartitionedRiceContents partitioned_rice_contents,
int *bits
)
{
int rice_parameter, partition_bits;
int best_partition_bits;
int min_rice_parameter, max_rice_parameter, best_rice_parameter = 0;
int bits_ = ENTROPY_CODING_METHOD_TYPE_LEN + ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN;
int *parameters;
format_entropy_coding_method_partitioned_rice_contents_ensure_size(partitioned_rice_contents, max(6, partition_order));
parameters = partitioned_rice_contents.parameters;
if (partition_order == 0) {
unsigned i;
if (rice_parameter_search_dist) {
if (suggested_rice_parameter < rice_parameter_search_dist)
min_rice_parameter = 0;
else
min_rice_parameter = suggested_rice_parameter - rice_parameter_search_dist;
max_rice_parameter = suggested_rice_parameter + rice_parameter_search_dist;
if (max_rice_parameter >= ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) {
fprintf(stderr, "clipping rice_parameter (%u -> %u) @2\n", max_rice_parameter, ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1);
max_rice_parameter = ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1;
}
}
else
min_rice_parameter = max_rice_parameter = suggested_rice_parameter;
best_partition_bits = 0xffffffff;
for(rice_parameter = min_rice_parameter; rice_parameter <= max_rice_parameter; rice_parameter++) {
unsigned rice_parameter_estimate = rice_parameter-1;
partition_bits = (1+rice_parameter) * residual_samples;
partition_bits += ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN;
for(i = 0; i < residual_samples; i++) {
partition_bits += VARIABLE_RICE_BITS(abs_residual[i], rice_parameter_estimate);
}
if (partition_bits < best_partition_bits) {
best_rice_parameter = rice_parameter;
best_partition_bits = partition_bits;
}
}
parameters[0] = best_rice_parameter;
bits_ += best_partition_bits;
}
else {
unsigned partition, residual_sample, save_residual_sample, partition_sample;
unsigned partition_samples;
uint64 mean, k;
int partitions = 1 << partition_order;
for(partition = residual_sample = 0; partition < partitions; partition++) {
partition_samples = (residual_samples+predictor_order) >> partition_order;
if (partition == 0) {
if (partition_samples <= predictor_order)
return false;
else
partition_samples -= predictor_order;
}
mean = 0;
save_residual_sample = residual_sample;
for(partition_sample = 0; partition_sample < partition_samples; residual_sample++, partition_sample++)
mean += abs_residual[residual_sample];
residual_sample = save_residual_sample;
// calc rice_parameter ala LOCO-I
for(rice_parameter = 0, k = partition_samples; k < mean; rice_parameter++, k <<= 1)
;
if (rice_parameter >= ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) {
fprintf(stderr, "clipping rice_parameter (%u -> %u) @3\n", rice_parameter, ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1);
rice_parameter = ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1;
}
if (rice_parameter_search_dist) {
if (rice_parameter < rice_parameter_search_dist)
min_rice_parameter = 0;
else
min_rice_parameter = rice_parameter - rice_parameter_search_dist;
max_rice_parameter = rice_parameter + rice_parameter_search_dist;
if (max_rice_parameter >= ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) {
fprintf(stderr, "clipping rice_parameter (%u -> %u) @4\n", max_rice_parameter, ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1);
max_rice_parameter = ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1;
}
}
else
min_rice_parameter = max_rice_parameter = rice_parameter;
best_partition_bits = 0xffffffff;
for(rice_parameter = min_rice_parameter; rice_parameter <= max_rice_parameter; rice_parameter++) {
unsigned rice_parameter_estimate = rice_parameter-1;
partition_bits = (1+rice_parameter) * partition_samples;
partition_bits += ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN;
save_residual_sample = residual_sample;
for(partition_sample = 0; partition_sample < partition_samples; residual_sample++, partition_sample++) {
partition_bits += VARIABLE_RICE_BITS(abs_residual[residual_sample], rice_parameter);
}
if (rice_parameter != max_rice_parameter)
residual_sample = save_residual_sample;
if (partition_bits < best_partition_bits) {
best_rice_parameter = rice_parameter;
best_partition_bits = partition_bits;
}
}
parameters[partition] = best_rice_parameter;
bits_ += best_partition_bits;
}
}
*bits = bits_;
return true;
}
*/
/*
boolean set_partitioned_rice_with_precompute_(
int[] abs_residual,
long[] abs_residual_partition_sums,
int[] raw_bits_per_partition,
int residual_samples,
int predictor_order,
int suggested_rice_parameter,
int rice_parameter_search_dist,
int partition_order,
boolean search_for_escapes,
EntropyPartitionedRiceContents partitioned_rice_contents,
int *bits
)
{
int rice_parameter, partition_bits;
int best_partition_bits;
int min_rice_parameter, max_rice_parameter, best_rice_parameter = 0;
int flat_bits;
int bits_ = ENTROPY_CODING_METHOD_TYPE_LEN + ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN;
int *parameters, *raw_bits;
format_entropy_coding_method_partitioned_rice_contents_ensure_size(partitioned_rice_contents, max(6, partition_order));
parameters = partitioned_rice_contents.parameters;
raw_bits = partitioned_rice_contents.raw_bits;
if (partition_order == 0) {
unsigned i;
if (rice_parameter_search_dist) {
if (suggested_rice_parameter < rice_parameter_search_dist)
min_rice_parameter = 0;
else
min_rice_parameter = suggested_rice_parameter - rice_parameter_search_dist;
max_rice_parameter = suggested_rice_parameter + rice_parameter_search_dist;
if (max_rice_parameter >= ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) {
fprintf(stderr, "clipping rice_parameter (%u -> %u) @5\n", max_rice_parameter, ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1);
max_rice_parameter = ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1;
}
}
else
min_rice_parameter = max_rice_parameter = suggested_rice_parameter;
best_partition_bits = 0xffffffff;
for(rice_parameter = min_rice_parameter; rice_parameter <= max_rice_parameter; rice_parameter++) {
unsigned rice_parameter_estimate = rice_parameter-1;
partition_bits = (1+rice_parameter) * residual_samples;
partition_bits += ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN;
for(i = 0; i < residual_samples; i++) {
partition_bits += VARIABLE_RICE_BITS(abs_residual[i], rice_parameter_estimate);
}
if (partition_bits < best_partition_bits) {
best_rice_parameter = rice_parameter;
best_partition_bits = partition_bits;
}
}
if (search_for_escapes) {
flat_bits = ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN + ENTROPY_CODING_METHOD_PARTITIONED_RICE_RAW_LEN + raw_bits_per_partition[0] * residual_samples;
if (flat_bits <= best_partition_bits) {
raw_bits[0] = raw_bits_per_partition[0];
best_rice_parameter = ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER;
best_partition_bits = flat_bits;
}
}
parameters[0] = best_rice_parameter;
bits_ += best_partition_bits;
}
else {
unsigned partition, residual_sample, save_residual_sample, partition_sample;
unsigned partition_samples;
uint64 mean, k;
unsigned partitions = 1 << partition_order;
for(partition = residual_sample = 0; partition < partitions; partition++) {
partition_samples = (residual_samples+predictor_order) >> partition_order;
if (partition == 0) {
if (partition_samples <= predictor_order)
return false;
else
partition_samples -= predictor_order;
}
mean = abs_residual_partition_sums[partition];
// calc rice_parameter ala LOCO-I
for(rice_parameter = 0, k = partition_samples; k < mean; rice_parameter++, k <<= 1)
;
if (rice_parameter >= ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) {
fprintf(stderr, "clipping rice_parameter (%u -> %u) @6\n", rice_parameter, ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1);
rice_parameter = ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1;
}
if (rice_parameter_search_dist) {
if (rice_parameter < rice_parameter_search_dist)
min_rice_parameter = 0;
else
min_rice_parameter = rice_parameter - rice_parameter_search_dist;
max_rice_parameter = rice_parameter + rice_parameter_search_dist;
if (max_rice_parameter >= ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) {
fprintf(stderr, "clipping rice_parameter (%u -> %u) @7\n", max_rice_parameter, ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1);
max_rice_parameter = ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1;
}
}
else
min_rice_parameter = max_rice_parameter = rice_parameter;
best_partition_bits = 0xffffffff;
for(rice_parameter = min_rice_parameter; rice_parameter <= max_rice_parameter; rice_parameter++) {
unsigned rice_parameter_estimate = rice_parameter-1;
partition_bits = (1+rice_parameter) * partition_samples;
partition_bits += ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN;
save_residual_sample = residual_sample;
for(partition_sample = 0; partition_sample < partition_samples; residual_sample++, partition_sample++) {
partition_bits += VARIABLE_RICE_BITS(abs_residual[residual_sample], rice_parameter_estimate);
}
if (rice_parameter != max_rice_parameter)
residual_sample = save_residual_sample;
if (partition_bits < best_partition_bits) {
best_rice_parameter = rice_parameter;
best_partition_bits = partition_bits;
}
}
if (search_for_escapes) {
flat_bits = ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN + ENTROPY_CODING_METHOD_PARTITIONED_RICE_RAW_LEN + raw_bits_per_partition[partition] * partition_samples;
if (flat_bits <= best_partition_bits) {
raw_bits[partition] = raw_bits_per_partition[partition];
best_rice_parameter = ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER;
best_partition_bits = flat_bits;
}
}
parameters[partition] = best_rice_parameter;
bits_ += best_partition_bits;
}
}
*bits = bits_;
return true;
}
*/
/*
private int getWastedBits(int[] signal, int samples) {
int i, shift;
int x = 0;
for(i = 0; i < samples && !(x&1); i++)
x |= signal[i];
if (x == 0) {
shift = 0;
}
else {
for(shift = 0; !(x&1); shift++)
x >>= 1;
}
if (shift > 0) {
for(i = 0; i < samples; i++)
signal[i] >>= shift;
}
return shift;
}
*/
/*
private void appendToVerifyFifo(verify_input_fifo fifo, int[][] input, int input_offset, unsigned channels, unsigned wide_samples) {
unsigned channel;
for(channel = 0; channel < channels; channel++)
memcpy(&fifo.data[channel][fifo->tail], &input[channel][input_offset], sizeof(int) * wide_samples);
fifo.tail += wide_samples;
}
private void appendToVerifyFifoInterleaved(verify_input_fifo fifo, int input[], int input_offset, int channels, int wide_samples) {
int tail = fifo.tail;
int sample = input_offset * channels;
for(int wide_sample = 0; wide_sample < wide_samples; wide_sample++) {
for(int channel = 0; channel < channels; channel++)
fifo.data[channel][tail] = input[sample++];
tail++;
}
fifo.tail = tail;
}
*/
/*
StreamDecoderReadStatus verify_read_callback_(StreamDecoder decoder, byte buffer[], unsigned *bytes, void *client_data)
{
StreamEncoder *encoder = (StreamEncoder*)client_data;
unsigned encoded_bytes = verifyData.output.bytes;
(void)decoder;
if (verifyData.needs_magic_hack) {
ASSERT(*bytes >= STREAM_SYNC_LENGTH);
*bytes = STREAM_SYNC_LENGTH;
memcpy(buffer, STREAM_SYNC_STRING, *bytes);
verifyData.needs_magic_hack = false;
}
else {
if (encoded_bytes == 0) {
// If we get here, a FIFO underflow has occurred, which means there is a bug somewhere.
ASSERT(0);
return STREAM_DECODER_READ_STATUS_ABORT;
}
else if (encoded_bytes < *bytes)
*bytes = encoded_bytes;
memcpy(buffer, verifyData.output.data, *bytes);
verifyData.output.data += *bytes;
verifyData.output.bytes -= *bytes;
}
return STREAM_DECODER_READ_STATUS_CONTINUE;
}
*/
/*
StreamDecoderWriteStatus verify_write_callback_(StreamDecoder *decoder, Frame *frame, int * buffer[], void *client_data)
{
StreamEncoder *encoder = (StreamEncoder *)client_data;
unsigned channel;
unsigned channels = stream_decoder_get_channels(decoder);
unsigned blocksize = frame->header.blocksize;
unsigned bytes_per_block = sizeof(int) * blocksize;
for(channel = 0; channel < channels; channel++) {
if (0 != memcmp(buffer[channel], verifyData.input_fifo.data[channel], bytes_per_block)) {
unsigned i, sample = 0;
int expect = 0, got = 0;
for(i = 0; i < blocksize; i++) {
if (buffer[channel][i] != verifyData.input_fifo.data[channel][i]) {
sample = i;
expect = (int)verifyData.input_fifo.data[channel][i];
got = (int)buffer[channel][i];
break;
}
}
ASSERT(i < blocksize);
ASSERT(frame->header.number_type == FRAME_NUMBER_TYPE_SAMPLE_NUMBER);
verifyData.error_stats.absolute_sample = frame->header.number.sample_number + sample;
verifyData.error_stats.frame_number = (unsigned)(frame->header.number.sample_number / blocksize);
verifyData.error_stats.channel = channel;
verifyData.error_stats.sample = sample;
verifyData.error_stats.expected = expect;
verifyData.error_stats.got = got;
state = STREAM_ENCODER_VERIFY_MISMATCH_IN_AUDIO_DATA;
return STREAM_DECODER_WRITE_STATUS_ABORT;
}
}
// dequeue the frame from the fifo
for(channel = 0; channel < channels; channel++) {
memmove(&verifyData.input_fifo.data[channel][0], &verifyData.input_fifo.data[channel][blocksize], verifyData.input_fifo.tail - blocksize);
}
verifyData.input_fifo.tail -= blocksize;
return STREAM_DECODER_WRITE_STATUS_CONTINUE;
}
*/
/*
void verify_metadata_callback_(StreamDecoder *decoder, StreamMetadata *metadata, void *client_data)
{
(void)decoder, (void)metadata, (void)client_data;
}
*/
/*
void verify_error_callback_(StreamDecoder *decoder, StreamDecoderErrorStatus status, void *client_data)
{
StreamEncoder *encoder = (StreamEncoder*)client_data;
(void)decoder, (void)status;
state = STREAM_ENCODER_VERIFY_DECODER_ERROR;
}
*/
}