All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.jogamp.common.util.IntBitfield Maven / Gradle / Ivy

There is a newer version: 2.3.2
Show newest version
/**
 * Copyright 2012 JogAmp Community. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification, are
 * permitted provided that the following conditions are met:
 *
 *    1. Redistributions of source code must retain the above copyright notice, this list of
 *       conditions and the following disclaimer.
 *
 *    2. Redistributions in binary form must reproduce the above copyright notice, this list
 *       of conditions and the following disclaimer in the documentation and/or other materials
 *       provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY JogAmp Community ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
 * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JogAmp Community OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * The views and conclusions contained in the software and documentation are those of the
 * authors and should not be interpreted as representing official policies, either expressed
 * or implied, of JogAmp Community.
 */
package com.jogamp.common.util;

/**
 * Simple bitfield holder class using an int[] storage.
 * 

* IntBitfield allows convenient access of a wide field of transient bits using efficient storage in O(1). *

*

* It can be used e.g. to map key-codes to pressed-state etc. *

*/ public class IntBitfield { /** Unit size in bits, here 32 bits for one int unit. */ public static final int UNIT_SIZE = 32; private static final long UNIT_SHIFT_L = 5L; private static final int UNIT_SHIFT_I = 5; private final int[] storage; private final long bitsCountL; private final int bitsCountI; /** * @param bitCount */ public IntBitfield(long bitCount) { final int units = (int) ( ( bitCount + 7L ) >> UNIT_SHIFT_L ); this.storage = new int[units]; this.bitsCountL = (long)units << UNIT_SHIFT_L ; this.bitsCountI = bitsCountL > Integer.MAX_VALUE ? Integer.MAX_VALUE : (int)bitsCountL; } /** * @param bitCount */ public IntBitfield(int bitCount) { final int units = ( bitCount + 7 ) >> UNIT_SHIFT_I; this.storage = new int[units]; this.bitsCountI = units << UNIT_SHIFT_I; this.bitsCountL = bitsCountI; } private final void check(long bitnum) { if( 0 > bitnum || bitnum >= bitsCountL ) { throw new ArrayIndexOutOfBoundsException("Bitnum should be within [0.."+(bitsCountL-1)+"], but is "+bitnum); } } private final void check(int bitnum) { if( 0 > bitnum || bitnum >= bitsCountI ) { throw new ArrayIndexOutOfBoundsException("Bitnum should be within [0.."+(bitsCountI-1)+"], but is "+bitnum); } } /** Return the capacity of this bit field, i.e. the number of bits stored int this field. */ public final long capacity() { return bitsCountL; } /** Return true if the bit at position bitnum is set, otherwise false. */ public final boolean get(long bitnum) { check(bitnum); final int u = (int) ( bitnum >> UNIT_SHIFT_L ); final int b = (int) ( bitnum - ( (long)u << UNIT_SHIFT_L ) ); return 0 != ( storage[u] & ( 1 << b ) ) ; } /** Return true if the bit at position bitnum is set, otherwise false. */ public final boolean get(int bitnum) { check(bitnum); final int u = bitnum >> UNIT_SHIFT_I; final int b = bitnum - ( u << UNIT_SHIFT_I ); return 0 != ( storage[u] & ( 1 << b ) ) ; } /** * Set or clear the bit at position bitnum according to bit * and return the previous value. */ public final boolean put(long bitnum, boolean bit) { check(bitnum); final int u = (int) ( bitnum >> UNIT_SHIFT_L ); final int b = (int) ( bitnum - ( (long)u << UNIT_SHIFT_L ) ); final int m = 1 << b; final boolean prev = 0 != ( storage[u] & m ) ; if( prev != bit ) { if( bit ) { storage[u] |= m; } else { storage[u] &= ~m; } } return prev; } /** * Set or clear the bit at position bitnum according to bit * and return the previous value. */ public final boolean put(int bitnum, boolean bit) { check(bitnum); final int u = bitnum >> UNIT_SHIFT_I; final int b = bitnum - ( u << UNIT_SHIFT_I ); final int m = 1 << b; final boolean prev = 0 != ( storage[u] & m ) ; if( prev != bit ) { if( bit ) { storage[u] |= m; } else { storage[u] &= ~m; } } return prev; } /** * Returns the number of set bits within given 32bit integer in O(1) * using HAKEM Bit Count: *
     *   http://www.inwap.com/pdp10/hbaker/hakmem/hakmem.html
     *   http://home.pipeline.com/~hbaker1/hakmem/hacks.html#item169
     *   http://tekpool.wordpress.com/category/bit-count/
     * 
*/ public static final int getBitCount(final int n) { int c = n; c -= (n >> 1) & 033333333333; c -= (n >> 2) & 011111111111; return ( (c + ( c >> 3 ) ) & 030707070707 ) % 63; } /** * Returns the number of set bits within this bitfield. */ public long getBitCount() { long c = 0; for(int i = storage.length-1; i>=0; i--) { c += getBitCount(storage[i]); } return c; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy