org.joml.Vector4d Maven / Gradle / Ivy
Show all versions of joml Show documentation
/*
* The MIT License
*
* Copyright (c) 2015-2021 Richard Greenlees
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
package org.joml;
import java.io.Externalizable;
import java.io.IOException;
import java.io.ObjectInput;
import java.io.ObjectOutput;
import java.nio.*;
import java.text.DecimalFormat;
import java.text.NumberFormat;
/**
* Contains the definition of a Vector comprising 4 doubles and associated transformations.
*
* @author Richard Greenlees
* @author Kai Burjack
* @author F. Neurath
*/
public class Vector4d implements Externalizable, Cloneable, Vector4dc {
private static final long serialVersionUID = 1L;
/**
* The x component of the vector.
*/
public double x;
/**
* The y component of the vector.
*/
public double y;
/**
* The z component of the vector.
*/
public double z;
/**
* The w component of the vector.
*/
public double w;
/**
* Create a new {@link Vector4d} of (0, 0, 0, 1)
.
*/
public Vector4d() {
this.w = 1.0;
}
/**
* Create a new {@link Vector4d} with the same values as v
.
*
* @param v
* the {@link Vector4dc} to copy the values from
*/
public Vector4d(Vector4dc v) {
this.x = v.x();
this.y = v.y();
this.z = v.z();
this.w = v.w();
}
/**
* Create a new {@link Vector4d} with the same values as v
.
*
* @param v
* the {@link Vector4ic} to copy the values from
*/
public Vector4d(Vector4ic v) {
this.x = v.x();
this.y = v.y();
this.z = v.z();
this.w = v.w();
}
/**
* Create a new {@link Vector4d} with the first three components from the
* given v
and the given w
.
*
* @param v
* the {@link Vector3dc}
* @param w
* the w component
*/
public Vector4d(Vector3dc v, double w) {
this.x = v.x();
this.y = v.y();
this.z = v.z();
this.w = w;
}
/**
* Create a new {@link Vector4d} with the first three components from the
* given v
and the given w
.
*
* @param v
* the {@link Vector3ic}
* @param w
* the w component
*/
public Vector4d(Vector3ic v, double w) {
this.x = v.x();
this.y = v.y();
this.z = v.z();
this.w = w;
}
/**
* Create a new {@link Vector4d} with the first two components from the
* given v
and the given z
and w
.
*
* @param v
* the {@link Vector2dc}
* @param z
* the z component
* @param w
* the w component
*/
public Vector4d(Vector2dc v, double z, double w) {
this.x = v.x();
this.y = v.y();
this.z = z;
this.w = w;
}
/**
* Create a new {@link Vector4d} with the first two components from the
* given v
and the given z
and w
.
*
* @param v
* the {@link Vector2ic}
* @param z
* the z component
* @param w
* the w component
*/
public Vector4d(Vector2ic v, double z, double w) {
this.x = v.x();
this.y = v.y();
this.z = z;
this.w = w;
}
/**
* Create a new {@link Vector4d} and initialize all four components with the given value.
*
* @param d
* the value of all four components
*/
public Vector4d(double d) {
this.x = d;
this.y = d;
this.z = d;
this.w = d;
}
/**
* Create a new {@link Vector4d} with the same values as v
.
*
* @param v
* the {@link Vector4fc} to copy the values from
*/
public Vector4d(Vector4fc v) {
this.x = v.x();
this.y = v.y();
this.z = v.z();
this.w = v.w();
}
/**
* Create a new {@link Vector4d} with the x, y, and z components from the
* given v
and the w component from the given w
.
*
* @param v
* the {@link Vector3fc}
* @param w
* the w component
*/
public Vector4d(Vector3fc v, double w) {
this.x = v.x();
this.y = v.y();
this.z = v.z();
this.w = w;
}
/**
* Create a new {@link Vector4d} with the x and y components from the
* given v
and the z and w components from the given z
and w
.
*
* @param v
* the {@link Vector2fc}
* @param z
* the z component
* @param w
* the w component
*/
public Vector4d(Vector2fc v, double z, double w) {
this.x = v.x();
this.y = v.y();
this.z = z;
this.w = w;
}
/**
* Create a new {@link Vector4d} with the given component values.
*
* @param x
* the x component
* @param y
* the y component
* @param z
* the z component
* @param w
* the w component
*/
public Vector4d(double x, double y, double z, double w) {
this.x = x;
this.y = y;
this.z = z;
this.w = w;
}
/**
* Create a new {@link Vector4d} and initialize its four components from the first
* four elements of the given array.
*
* @param xyzw
* the array containing at least four elements
*/
public Vector4d(float[] xyzw) {
this.x = xyzw[0];
this.y = xyzw[1];
this.z = xyzw[2];
this.w = xyzw[3];
}
/**
* Create a new {@link Vector4d} and initialize its four components from the first
* four elements of the given array.
*
* @param xyzw
* the array containing at least four elements
*/
public Vector4d(double[] xyzw) {
this.x = xyzw[0];
this.y = xyzw[1];
this.z = xyzw[2];
this.w = xyzw[3];
}
/**
* Create a new {@link Vector4d} and read this vector from the supplied {@link ByteBuffer}
* at the current buffer {@link ByteBuffer#position() position}.
*
* This method will not increment the position of the given ByteBuffer.
*
* In order to specify the offset into the ByteBuffer at which
* the vector is read, use {@link #Vector4d(int, ByteBuffer)}, taking
* the absolute position as parameter.
*
* @param buffer
* values will be read in x, y, z, w
order
* @see #Vector4d(int, ByteBuffer)
*/
public Vector4d(ByteBuffer buffer) {
MemUtil.INSTANCE.get(this, buffer.position(), buffer);
}
/**
* Create a new {@link Vector4d} and read this vector from the supplied {@link ByteBuffer}
* starting at the specified absolute buffer position/index.
*
* This method will not increment the position of the given ByteBuffer.
*
* @param index the absolute position into the ByteBuffer
* @param buffer values will be read in x, y, z, w
order
*/
public Vector4d(int index, ByteBuffer buffer) {
MemUtil.INSTANCE.get(this, index, buffer);
}
/**
* Create a new {@link Vector4d} and read this vector from the supplied {@link DoubleBuffer}
* at the current buffer {@link DoubleBuffer#position() position}.
*
* This method will not increment the position of the given DoubleBuffer.
*
* In order to specify the offset into the DoubleBuffer at which
* the vector is read, use {@link #Vector4d(int, DoubleBuffer)}, taking
* the absolute position as parameter.
*
* @param buffer values will be read in x, y, z, w
order
* @see #Vector4d(int, DoubleBuffer)
*/
public Vector4d(DoubleBuffer buffer) {
MemUtil.INSTANCE.get(this, buffer.position(), buffer);
}
/**
* Create a new {@link Vector4d} and read this vector from the supplied {@link DoubleBuffer}
* starting at the specified absolute buffer position/index.
*
* This method will not increment the position of the given DoubleBuffer.
*
* @param index the absolute position into the DoubleBuffer
* @param buffer values will be read in x, y, z, w
order
*/
public Vector4d(int index, DoubleBuffer buffer) {
MemUtil.INSTANCE.get(this, index, buffer);
}
public double x() {
return this.x;
}
public double y() {
return this.y;
}
public double z() {
return this.z;
}
public double w() {
return this.w;
}
/**
* Set this {@link Vector4d} to the values of the given v
.
*
* @param v
* the vector whose values will be copied into this
* @return this
*/
public Vector4d set(Vector4dc v) {
this.x = v.x();
this.y = v.y();
this.z = v.z();
this.w = v.w();
return this;
}
/**
* Set this {@link Vector4d} to the values of the given v
.
*
* @param v
* the vector whose values will be copied into this
* @return this
*/
public Vector4d set(Vector4fc v) {
this.x = v.x();
this.y = v.y();
this.z = v.z();
this.w = v.w();
return this;
}
/**
* Set this {@link Vector4d} to the values of the given v
.
*
* @param v
* the vector whose values will be copied into this
* @return this
*/
public Vector4d set(Vector4ic v) {
this.x = v.x();
this.y = v.y();
this.z = v.z();
this.w = v.w();
return this;
}
/**
* Set the x, y, and z components of this to the components of
* v
and the w component to w
.
*
* @param v
* the {@link Vector3dc} to copy
* @param w
* the w component
* @return this
*/
public Vector4d set(Vector3dc v, double w) {
this.x = v.x();
this.y = v.y();
this.z = v.z();
this.w = w;
return this;
}
/**
* Set the x, y, and z components of this to the components of
* v
and the w component to w
.
*
* @param v
* the {@link Vector3ic} to copy
* @param w
* the w component
* @return this
*/
public Vector4d set(Vector3ic v, double w) {
this.x = v.x();
this.y = v.y();
this.z = v.z();
this.w = w;
return this;
}
/**
* Set the x, y, and z components of this to the components of
* v
and the w component to w
.
*
* @param v
* the {@link Vector3fc} to copy
* @param w
* the w component
* @return this
*/
public Vector4d set(Vector3fc v, double w) {
this.x = v.x();
this.y = v.y();
this.z = v.z();
this.w = w;
return this;
}
/**
* Set the x and y components from the given v
* and the z and w components to the given z
and w
.
*
* @param v
* the {@link Vector2dc}
* @param z
* the z component
* @param w
* the w component
* @return this
*/
public Vector4d set(Vector2dc v, double z, double w) {
this.x = v.x();
this.y = v.y();
this.z = z;
this.w = w;
return this;
}
/**
* Set the x and y components from the given v
* and the z and w components to the given z
and w
.
*
* @param v
* the {@link Vector2ic}
* @param z
* the z component
* @param w
* the w component
* @return this
*/
public Vector4d set(Vector2ic v, double z, double w) {
this.x = v.x();
this.y = v.y();
this.z = z;
this.w = w;
return this;
}
/**
* Set the x, y, z, and w components to the supplied value.
*
* @param d
* the value of all four components
* @return this
*/
public Vector4d set(double d) {
this.x = d;
this.y = d;
this.z = d;
this.w = d;
return this;
}
/**
* Set the x and y components from the given v
* and the z and w components to the given z
and w
.
*
* @param v
* the {@link Vector2fc}
* @param z
* the z components
* @param w
* the w components
* @return this
*/
public Vector4d set(Vector2fc v, double z, double w) {
this.x = v.x();
this.y = v.y();
this.z = z;
this.w = w;
return this;
}
/**
* Set the x, y, z, and w components to the supplied values.
*
* @param x
* the x component
* @param y
* the y component
* @param z
* the z component
* @param w
* the w component
* @return this
*/
public Vector4d set(double x, double y, double z, double w) {
this.x = x;
this.y = y;
this.z = z;
this.w = w;
return this;
}
/**
* Set the x, y, z components to the supplied values.
*
* @param x
* the x component
* @param y
* the y component
* @param z
* the z component
* @return this
*/
public Vector4d set(double x, double y, double z) {
this.x = x;
this.y = y;
this.z = z;
return this;
}
/**
* Set the four components of this vector to the first four elements of the given array.
*
* @param xyzw
* the array containing at least four elements
* @return this
*/
public Vector4d set(double[] xyzw) {
this.x = xyzw[0];
this.y = xyzw[1];
this.z = xyzw[2];
this.w = xyzw[3];
return this;
}
/**
* Set the four components of this vector to the first four elements of the given array.
*
* @param xyzw
* the array containing at least four elements
* @return this
*/
public Vector4d set(float[] xyzw) {
this.x = xyzw[0];
this.y = xyzw[1];
this.z = xyzw[2];
this.w = xyzw[3];
return this;
}
/**
* Read this vector from the supplied {@link ByteBuffer} at the current
* buffer {@link ByteBuffer#position() position}.
*
* This method will not increment the position of the given ByteBuffer.
*
* In order to specify the offset into the ByteBuffer at which
* the vector is read, use {@link #set(int, ByteBuffer)}, taking
* the absolute position as parameter.
*
* @param buffer
* values will be read in x, y, z, w
order
* @return this
* @see #set(int, ByteBuffer)
*/
public Vector4d set(ByteBuffer buffer) {
MemUtil.INSTANCE.get(this, buffer.position(), buffer);
return this;
}
/**
* Read this vector from the supplied {@link ByteBuffer} starting at the specified
* absolute buffer position/index.
*
* This method will not increment the position of the given ByteBuffer.
*
* @param index
* the absolute position into the ByteBuffer
* @param buffer
* values will be read in x, y, z, w
order
* @return this
*/
public Vector4d set(int index, ByteBuffer buffer) {
MemUtil.INSTANCE.get(this, index, buffer);
return this;
}
/**
* Read this vector from the supplied {@link DoubleBuffer} at the current
* buffer {@link DoubleBuffer#position() position}.
*
* This method will not increment the position of the given DoubleBuffer.
*
* In order to specify the offset into the DoubleBuffer at which
* the vector is read, use {@link #set(int, DoubleBuffer)}, taking
* the absolute position as parameter.
*
* @param buffer
* values will be read in x, y, z, w
order
* @return this
* @see #set(int, DoubleBuffer)
*/
public Vector4d set(DoubleBuffer buffer) {
MemUtil.INSTANCE.get(this, buffer.position(), buffer);
return this;
}
/**
* Read this vector from the supplied {@link DoubleBuffer} starting at the specified
* absolute buffer position/index.
*
* This method will not increment the position of the given DoubleBuffer.
*
* @param index
* the absolute position into the DoubleBuffer
* @param buffer
* values will be read in x, y, z, w
order
* @return this
*/
public Vector4d set(int index, DoubleBuffer buffer) {
MemUtil.INSTANCE.get(this, index, buffer);
return this;
}
/**
* Set the values of this vector by reading 4 double values from off-heap memory,
* starting at the given address.
*
* This method will throw an {@link UnsupportedOperationException} when JOML is used with `-Djoml.nounsafe`.
*
* This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.
*
* @param address
* the off-heap memory address to read the vector values from
* @return this
*/
public Vector4d setFromAddress(long address) {
if (Options.NO_UNSAFE)
throw new UnsupportedOperationException("Not supported when using joml.nounsafe");
MemUtil.MemUtilUnsafe.get(this, address);
return this;
}
/**
* Set the value of the specified component of this vector.
*
* @param component
* the component whose value to set, within [0..3]
* @param value
* the value to set
* @return this
* @throws IllegalArgumentException if component
is not within [0..3]
*/
public Vector4d setComponent(int component, double value) throws IllegalArgumentException {
switch (component) {
case 0:
x = value;
break;
case 1:
y = value;
break;
case 2:
z = value;
break;
case 3:
w = value;
break;
default:
throw new IllegalArgumentException();
}
return this;
}
public ByteBuffer get(ByteBuffer buffer) {
MemUtil.INSTANCE.put(this, buffer.position(), buffer);
return buffer;
}
public ByteBuffer get(int index, ByteBuffer buffer) {
MemUtil.INSTANCE.put(this, index, buffer);
return buffer;
}
public DoubleBuffer get(DoubleBuffer buffer) {
MemUtil.INSTANCE.put(this, buffer.position(), buffer);
return buffer;
}
public DoubleBuffer get(int index, DoubleBuffer buffer) {
MemUtil.INSTANCE.put(this, index, buffer);
return buffer;
}
public ByteBuffer getf(ByteBuffer buffer) {
MemUtil.INSTANCE.putf(this, buffer.position(), buffer);
return buffer;
}
public ByteBuffer getf(int index, ByteBuffer buffer) {
MemUtil.INSTANCE.putf(this, index, buffer);
return buffer;
}
public FloatBuffer get(FloatBuffer buffer) {
MemUtil.INSTANCE.put(this, buffer.position(), buffer);
return buffer;
}
public FloatBuffer get(int index, FloatBuffer buffer) {
MemUtil.INSTANCE.put(this, index, buffer);
return buffer;
}
public Vector4dc getToAddress(long address) {
if (Options.NO_UNSAFE)
throw new UnsupportedOperationException("Not supported when using joml.nounsafe");
MemUtil.MemUtilUnsafe.put(this, address);
return this;
}
/**
* Subtract the supplied vector from this one.
*
* @param v
* the vector to subtract
* @return this
*/
public Vector4d sub(Vector4dc v) {
this.x = x - v.x();
this.y = y - v.y();
this.z = z - v.z();
this.w = w - v.w();
return this;
}
/**
* Subtract the supplied vector from this one and store the result in dest
.
*
* @param v
* the vector to subtract
* @param dest
* will hold the result
* @return dest
*/
public Vector4d sub(Vector4dc v, Vector4d dest) {
dest.x = x - v.x();
dest.y = y - v.y();
dest.z = z - v.z();
dest.w = w - v.w();
return dest;
}
/**
* Subtract the supplied vector from this one.
*
* @param v
* the vector to subtract
* @return this
*/
public Vector4d sub(Vector4fc v) {
this.x = x - v.x();
this.y = y - v.y();
this.z = z - v.z();
this.w = w - v.w();
return this;
}
/**
* Subtract the supplied vector from this one and store the result in dest
.
*
* @param v
* the vector to subtract
* @param dest
* will hold the result
* @return dest
*/
public Vector4d sub(Vector4fc v, Vector4d dest) {
dest.x = x - v.x();
dest.y = y - v.y();
dest.z = z - v.z();
dest.w = w - v.w();
return dest;
}
/**
* Subtract (x, y, z, w)
from this.
*
* @param x
* the x component to subtract
* @param y
* the y component to subtract
* @param z
* the z component to subtract
* @param w
* the w component to subtract
* @return this
*/
public Vector4d sub(double x, double y, double z, double w) {
this.x = this.x - x;
this.y = this.y - y;
this.z = this.z - z;
this.w = this.w - w;
return this;
}
public Vector4d sub(double x, double y, double z, double w, Vector4d dest) {
dest.x = this.x - x;
dest.y = this.y - y;
dest.z = this.z - z;
dest.w = this.w - w;
return dest;
}
/**
* Add the supplied vector to this one.
*
* @param v
* the vector to add
* @return this
*/
public Vector4d add(Vector4dc v) {
this.x = x + v.x();
this.y = y + v.y();
this.z = z + v.z();
this.w = w + v.w();
return this;
}
public Vector4d add(Vector4dc v, Vector4d dest) {
dest.x = x + v.x();
dest.y = y + v.y();
dest.z = z + v.z();
dest.w = w + v.w();
return dest;
}
public Vector4d add(Vector4fc v, Vector4d dest) {
dest.x = x + v.x();
dest.y = y + v.y();
dest.z = z + v.z();
dest.w = w + v.w();
return dest;
}
/**
* Add (x, y, z, w)
to this.
*
* @param x
* the x component to add
* @param y
* the y component to add
* @param z
* the z component to add
* @param w
* the w component to add
* @return this
*/
public Vector4d add(double x, double y, double z, double w) {
this.x = this.x + x;
this.y = this.y + y;
this.z = this.z + z;
this.w = this.w + w;
return this;
}
public Vector4d add(double x, double y, double z, double w, Vector4d dest) {
dest.x = this.x + x;
dest.y = this.y + y;
dest.z = this.z + z;
dest.w = this.w + w;
return dest;
}
/**
* Add the supplied vector to this one.
*
* @param v
* the vector to add
* @return this
*/
public Vector4d add(Vector4fc v) {
this.x = x + v.x();
this.y = y + v.y();
this.z = z + v.z();
this.w = w + v.w();
return this;
}
/**
* Add the component-wise multiplication of a * b
to this vector.
*
* @param a
* the first multiplicand
* @param b
* the second multiplicand
* @return this
*/
public Vector4d fma(Vector4dc a, Vector4dc b) {
this.x = Math.fma(a.x(), b.x(), x);
this.y = Math.fma(a.y(), b.y(), y);
this.z = Math.fma(a.z(), b.z(), z);
this.w = Math.fma(a.w(), b.w(), w);
return this;
}
/**
* Add the component-wise multiplication of a * b
to this vector.
*
* @param a
* the first multiplicand
* @param b
* the second multiplicand
* @return this
*/
public Vector4d fma(double a, Vector4dc b) {
this.x = Math.fma(a, b.x(), x);
this.y = Math.fma(a, b.y(), y);
this.z = Math.fma(a, b.z(), z);
this.w = Math.fma(a, b.w(), w);
return this;
}
public Vector4d fma(Vector4dc a, Vector4dc b, Vector4d dest) {
dest.x = Math.fma(a.x(), b.x(), x);
dest.y = Math.fma(a.y(), b.y(), y);
dest.z = Math.fma(a.z(), b.z(), z);
dest.w = Math.fma(a.w(), b.w(), w);
return dest;
}
public Vector4d fma(double a, Vector4dc b, Vector4d dest) {
dest.x = Math.fma(a, b.x(), x);
dest.y = Math.fma(a, b.y(), y);
dest.z = Math.fma(a, b.z(), z);
dest.w = Math.fma(a, b.w(), w);
return dest;
}
/**
* Add the component-wise multiplication of this * a
to b
* and store the result in this
.
*
* @param a
* the multiplicand
* @param b
* the addend
* @return this
*/
public Vector4d mulAdd(Vector4dc a, Vector4dc b) {
this.x = Math.fma(x, a.x(), b.x());
this.y = Math.fma(y, a.y(), b.y());
this.z = Math.fma(z, a.z(), b.z());
return this;
}
/**
* Add the component-wise multiplication of this * a
to b
* and store the result in this
.
*
* @param a
* the multiplicand
* @param b
* the addend
* @return this
*/
public Vector4d mulAdd(double a, Vector4dc b) {
this.x = Math.fma(x, a, b.x());
this.y = Math.fma(y, a, b.y());
this.z = Math.fma(z, a, b.z());
return this;
}
public Vector4d mulAdd(Vector4dc a, Vector4dc b, Vector4d dest) {
dest.x = Math.fma(x, a.x(), b.x());
dest.y = Math.fma(y, a.y(), b.y());
dest.z = Math.fma(z, a.z(), b.z());
return dest;
}
public Vector4d mulAdd(double a, Vector4dc b, Vector4d dest) {
dest.x = Math.fma(x, a, b.x());
dest.y = Math.fma(y, a, b.y());
dest.z = Math.fma(z, a, b.z());
return dest;
}
/**
* Multiply this {@link Vector4d} component-wise by the given {@link Vector4d}.
*
* @param v
* the vector to multiply by
* @return this
*/
public Vector4d mul(Vector4dc v) {
this.x = x * v.x();
this.y = y * v.y();
this.z = z * v.z();
this.w = w * v.w();
return this;
}
public Vector4d mul(Vector4dc v, Vector4d dest) {
dest.x = x * v.x();
dest.y = y * v.y();
dest.z = z * v.z();
dest.w = w * v.w();
return dest;
}
/**
* Divide this {@link Vector4d} component-wise by the given {@link Vector4dc}.
*
* @param v
* the vector to divide by
* @return this
*/
public Vector4d div(Vector4dc v) {
this.x = x / v.x();
this.y = y / v.y();
this.z = z / v.z();
this.w = w / v.w();
return this;
}
public Vector4d div(Vector4dc v, Vector4d dest) {
dest.x = x / v.x();
dest.y = y / v.y();
dest.z = z / v.z();
dest.w = w / v.w();
return dest;
}
/**
* Multiply this {@link Vector4d} component-wise by the given {@link Vector4fc}.
*
* @param v
* the vector to multiply by
* @return this
*/
public Vector4d mul(Vector4fc v) {
this.x = x * v.x();
this.y = y * v.y();
this.z = z * v.z();
this.w = w * v.w();
return this;
}
public Vector4d mul(Vector4fc v, Vector4d dest) {
dest.x = x * v.x();
dest.y = y * v.y();
dest.z = z * v.z();
dest.w = w * v.w();
return dest;
}
/**
* Multiply the given matrix mat
with this {@link Vector4d}.
*
* @param mat
* the matrix to multiply by
* @return this
*/
public Vector4d mul(Matrix4dc mat) {
if ((mat.properties() & Matrix4fc.PROPERTY_AFFINE) != 0)
return mulAffine(mat, this);
return mulGeneric(mat, this);
}
public Vector4d mul(Matrix4dc mat, Vector4d dest) {
if ((mat.properties() & Matrix4fc.PROPERTY_AFFINE) != 0)
return mulAffine(mat, dest);
return mulGeneric(mat, dest);
}
/**
* Multiply the transpose of the given matrix mat
with this Vector4f and store the result in
* this
.
*
* @param mat
* the matrix whose transpose to multiply the vector with
* @return this
*/
public Vector4d mulTranspose(Matrix4dc mat) {
if ((mat.properties() & Matrix4dc.PROPERTY_AFFINE) != 0)
return mulAffineTranspose(mat, this);
return mulGenericTranspose(mat, this);
}
public Vector4d mulTranspose(Matrix4dc mat, Vector4d dest) {
if ((mat.properties() & Matrix4dc.PROPERTY_AFFINE) != 0)
return mulAffineTranspose(mat, dest);
return mulGenericTranspose(mat, dest);
}
public Vector4d mulAffine(Matrix4dc mat, Vector4d dest) {
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30() * w)));
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31() * w)));
double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32() * w)));
dest.x = rx;
dest.y = ry;
dest.z = rz;
dest.w = w;
return dest;
}
private Vector4d mulGeneric(Matrix4dc mat, Vector4d dest) {
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30() * w)));
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31() * w)));
double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32() * w)));
double rw = Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33() * w)));
dest.x = rx;
dest.y = ry;
dest.z = rz;
dest.w = rw;
return dest;
}
public Vector4d mulAffineTranspose(Matrix4dc mat, Vector4d dest) {
double x = this.x, y = this.y, z = this.z, w = this.w;
dest.x = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, mat.m02() * z));
dest.y = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, mat.m12() * z));
dest.z = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, mat.m22() * z));
dest.w = Math.fma(mat.m30(), x, Math.fma(mat.m31(), y, mat.m32() * z + w));
return dest;
}
private Vector4d mulGenericTranspose(Matrix4dc mat, Vector4d dest) {
double x = this.x, y = this.y, z = this.z, w = this.w;
dest.x = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, Math.fma(mat.m02(), z, mat.m03() * w)));
dest.y = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, Math.fma(mat.m12(), z, mat.m13() * w)));
dest.z = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, Math.fma(mat.m22(), z, mat.m23() * w)));
dest.w = Math.fma(mat.m30(), x, Math.fma(mat.m31(), y, Math.fma(mat.m32(), z, mat.m33() * w)));
return dest;
}
/**
* Multiply the given matrix mat with this Vector4d and store the result in
* this
.
*
* @param mat
* the matrix to multiply the vector with
* @return this
*/
public Vector4d mul(Matrix4x3dc mat) {
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30() * w)));
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31() * w)));
double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32() * w)));
this.x = rx;
this.y = ry;
this.z = rz;
return this;
}
public Vector4d mul(Matrix4x3dc mat, Vector4d dest) {
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30() * w)));
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31() * w)));
double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32() * w)));
dest.x = rx;
dest.y = ry;
dest.z = rz;
dest.w = w;
return dest;
}
/**
* Multiply the given matrix mat with this Vector4d and store the result in
* this
.
*
* @param mat
* the matrix to multiply the vector with
* @return this
*/
public Vector4d mul(Matrix4x3fc mat) {
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30() * w)));
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31() * w)));
double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32() * w)));
this.x = rx;
this.y = ry;
this.z = rz;
return this;
}
public Vector4d mul(Matrix4x3fc mat, Vector4d dest) {
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30() * w)));
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31() * w)));
double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32() * w)));
dest.x = rx;
dest.y = ry;
dest.z = rz;
dest.w = w;
return dest;
}
/**
* Multiply the given matrix mat
with this {@link Vector4d}.
*
* @param mat
* the matrix to multiply by
* @return this
*/
public Vector4d mul(Matrix4fc mat) {
if ((mat.properties() & Matrix4fc.PROPERTY_AFFINE) != 0)
return mulAffine(mat, this);
return mulGeneric(mat, this);
}
public Vector4d mul(Matrix4fc mat, Vector4d dest) {
if ((mat.properties() & Matrix4fc.PROPERTY_AFFINE) != 0)
return mulAffine(mat, dest);
return mulGeneric(mat, dest);
}
private Vector4d mulAffine(Matrix4fc mat, Vector4d dest) {
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30() * w)));
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31() * w)));
double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32() * w)));
dest.x = rx;
dest.y = ry;
dest.z = rz;
dest.w = w;
return dest;
}
private Vector4d mulGeneric(Matrix4fc mat, Vector4d dest) {
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30() * w)));
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31() * w)));
double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32() * w)));
double rw = Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33() * w)));
dest.x = rx;
dest.y = ry;
dest.z = rz;
dest.w = rw;
return dest;
}
public Vector4d mulProject(Matrix4dc mat, Vector4d dest) {
double invW = 1.0 / Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33() * w)));
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30() * w))) * invW;
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31() * w))) * invW;
double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32() * w))) * invW;
dest.x = rx;
dest.y = ry;
dest.z = rz;
dest.w = 1.0;
return dest;
}
/**
* Multiply the given matrix mat
with this Vector4d, perform perspective division.
*
* @param mat
* the matrix to multiply this vector by
* @return this
*/
public Vector4d mulProject(Matrix4dc mat) {
double invW = 1.0 / Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33() * w)));
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30() * w))) * invW;
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31() * w))) * invW;
double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32() * w))) * invW;
this.x = rx;
this.y = ry;
this.z = rz;
this.w = 1.0;
return this;
}
public Vector3d mulProject(Matrix4dc mat, Vector3d dest) {
double invW = 1.0 / Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33() * w)));
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30() * w))) * invW;
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31() * w))) * invW;
double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32() * w))) * invW;
dest.x = rx;
dest.y = ry;
dest.z = rz;
return dest;
}
/**
* Multiply this Vector4d by the given scalar value.
*
* @param scalar
* the scalar to multiply by
* @return this
*/
public Vector4d mul(double scalar) {
this.x = x * scalar;
this.y = y * scalar;
this.z = z * scalar;
this.w = w * scalar;
return this;
}
public Vector4d mul(double scalar, Vector4d dest) {
dest.x = x * scalar;
dest.y = y * scalar;
dest.z = z * scalar;
dest.w = w * scalar;
return dest;
}
/**
* Divide this Vector4d by the given scalar value.
*
* @param scalar
* the scalar to divide by
* @return this
*/
public Vector4d div(double scalar) {
double inv = 1.0 / scalar;
this.x = x * inv;
this.y = y * inv;
this.z = z * inv;
this.w = w * inv;
return this;
}
public Vector4d div(double scalar, Vector4d dest) {
double inv = 1.0 / scalar;
dest.x = x * inv;
dest.y = y * inv;
dest.z = z * inv;
dest.w = w * inv;
return dest;
}
/**
* Transform this vector by the given quaternion quat
and store the result in this
.
*
* @see Quaterniond#transform(Vector4d)
*
* @param quat
* the quaternion to transform this vector
* @return this
*/
public Vector4d rotate(Quaterniondc quat) {
quat.transform(this, this);
return this;
}
public Vector4d rotate(Quaterniondc quat, Vector4d dest) {
quat.transform(this, dest);
return dest;
}
/**
* Rotate this vector the specified radians around the given rotation axis.
*
* @param angle
* the angle in radians
* @param x
* the x component of the rotation axis
* @param y
* the y component of the rotation axis
* @param z
* the z component of the rotation axis
* @return this
*/
public Vector4d rotateAxis(double angle, double x, double y, double z) {
if (y == 0.0 && z == 0.0 && Math.absEqualsOne(x))
return rotateX(x * angle, this);
else if (x == 0.0 && z == 0.0 && Math.absEqualsOne(y))
return rotateY(y * angle, this);
else if (x == 0.0 && y == 0.0 && Math.absEqualsOne(z))
return rotateZ(z * angle, this);
return rotateAxisInternal(angle, x, y, z, this);
}
public Vector4d rotateAxis(double angle, double aX, double aY, double aZ, Vector4d dest) {
if (aY == 0.0 && aZ == 0.0 && Math.absEqualsOne(aX))
return rotateX(aX * angle, dest);
else if (aX == 0.0 && aZ == 0.0 && Math.absEqualsOne(aY))
return rotateY(aY * angle, dest);
else if (aX == 0.0 && aY == 0.0 && Math.absEqualsOne(aZ))
return rotateZ(aZ * angle, dest);
return rotateAxisInternal(angle, aX, aY, aZ, dest);
}
private Vector4d rotateAxisInternal(double angle, double aX, double aY, double aZ, Vector4d dest) {
double hangle = angle * 0.5;
double sinAngle = Math.sin(hangle);
double qx = aX * sinAngle, qy = aY * sinAngle, qz = aZ * sinAngle;
double qw = Math.cosFromSin(sinAngle, hangle);
double w2 = qw * qw, x2 = qx * qx, y2 = qy * qy, z2 = qz * qz, zw = qz * qw;
double xy = qx * qy, xz = qx * qz, yw = qy * qw, yz = qy * qz, xw = qx * qw;
double nx = (w2 + x2 - z2 - y2) * x + (-zw + xy - zw + xy) * y + (yw + xz + xz + yw) * z;
double ny = (xy + zw + zw + xy) * x + ( y2 - z2 + w2 - x2) * y + (yz + yz - xw - xw) * z;
double nz = (xz - yw + xz - yw) * x + ( yz + yz + xw + xw) * y + (z2 - y2 - x2 + w2) * z;
dest.x = nx;
dest.y = ny;
dest.z = nz;
return dest;
}
/**
* Rotate this vector the specified radians around the X axis.
*
* @param angle
* the angle in radians
* @return this
*/
public Vector4d rotateX(double angle) {
double sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle);
double y = this.y * cos - this.z * sin;
double z = this.y * sin + this.z * cos;
this.y = y;
this.z = z;
return this;
}
public Vector4d rotateX(double angle, Vector4d dest) {
double sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle);
double y = this.y * cos - this.z * sin;
double z = this.y * sin + this.z * cos;
dest.x = this.x;
dest.y = y;
dest.z = z;
dest.w = this.w;
return dest;
}
/**
* Rotate this vector the specified radians around the Y axis.
*
* @param angle
* the angle in radians
* @return this
*/
public Vector4d rotateY(double angle) {
double sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle);
double x = this.x * cos + this.z * sin;
double z = -this.x * sin + this.z * cos;
this.x = x;
this.z = z;
return this;
}
public Vector4d rotateY(double angle, Vector4d dest) {
double sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle);
double x = this.x * cos + this.z * sin;
double z = -this.x * sin + this.z * cos;
dest.x = x;
dest.y = this.y;
dest.z = z;
dest.w = this.w;
return dest;
}
/**
* Rotate this vector the specified radians around the Z axis.
*
* @param angle
* the angle in radians
* @return this
*/
public Vector4d rotateZ(double angle) {
double sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle);
double x = this.x * cos - this.y * sin;
double y = this.x * sin + this.y * cos;
this.x = x;
this.y = y;
return this;
}
public Vector4d rotateZ(double angle, Vector4d dest) {
double sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle);
double x = this.x * cos - this.y * sin;
double y = this.x * sin + this.y * cos;
dest.x = x;
dest.y = y;
dest.z = this.z;
dest.w = this.w;
return dest;
}
public double lengthSquared() {
return Math.fma(x, x, Math.fma(y, y, Math.fma(z, z, w * w)));
}
/**
* Get the length squared of a 4-dimensional double-precision vector.
*
* @param x The vector's x component
* @param y The vector's y component
* @param z The vector's z component
* @param w The vector's w component
*
* @return the length squared of the given vector
*
* @author F. Neurath
*/
public static double lengthSquared(double x, double y, double z, double w) {
return Math.fma(x, x, Math.fma(y, y, Math.fma(z, z, w * w)));
}
public double length() {
return Math.sqrt(Math.fma(x, x, Math.fma(y, y, Math.fma(z, z, w * w))));
}
/**
* Get the length of a 4-dimensional double-precision vector.
*
* @param x The vector's x component
* @param y The vector's y component
* @param z The vector's z component
* @param w The vector's w component
*
* @return the length of the given vector
*
* @author F. Neurath
*/
public static double length(double x, double y, double z, double w) {
return Math.sqrt(Math.fma(x, x, Math.fma(y, y, Math.fma(z, z, w * w))));
}
/**
* Normalizes this vector.
*
* @return this
*/
public Vector4d normalize() {
double invLength = 1.0 / length();
this.x = x * invLength;
this.y = y * invLength;
this.z = z * invLength;
this.w = w * invLength;
return this;
}
public Vector4d normalize(Vector4d dest) {
double invLength = 1.0 / length();
dest.x = x * invLength;
dest.y = y * invLength;
dest.z = z * invLength;
dest.w = w * invLength;
return dest;
}
/**
* Scale this vector to have the given length.
*
* @param length
* the desired length
* @return this
*/
public Vector4d normalize(double length) {
double invLength = 1.0 / length() * length;
this.x = x * invLength;
this.y = y * invLength;
this.z = z * invLength;
this.w = w * invLength;
return this;
}
public Vector4d normalize(double length, Vector4d dest) {
double invLength = 1.0 / length() * length;
dest.x = x * invLength;
dest.y = y * invLength;
dest.z = z * invLength;
dest.w = w * invLength;
return dest;
}
/**
* Normalize this vector by computing only the norm of (x, y, z)
.
*
* @return this
*/
public Vector4d normalize3() {
double invLength = Math.invsqrt(Math.fma(x, x, Math.fma(y, y, z * z)));
this.x = x * invLength;
this.y = y * invLength;
this.z = z * invLength;
this.w = w * invLength;
return this;
}
public Vector4d normalize3(Vector4d dest) {
double invLength = Math.invsqrt(Math.fma(x, x, Math.fma(y, y, z * z)));
dest.x = x * invLength;
dest.y = y * invLength;
dest.z = z * invLength;
dest.w = w * invLength;
return dest;
}
public double distance(Vector4dc v) {
double dx = this.x - v.x();
double dy = this.y - v.y();
double dz = this.z - v.z();
double dw = this.w - v.w();
return Math.sqrt(Math.fma(dx, dx, Math.fma(dy, dy, Math.fma(dz, dz, dw * dw))));
}
public double distance(double x, double y, double z, double w) {
double dx = this.x - x;
double dy = this.y - y;
double dz = this.z - z;
double dw = this.w - w;
return Math.sqrt(Math.fma(dx, dx, Math.fma(dy, dy, Math.fma(dz, dz, dw * dw))));
}
public double distanceSquared(Vector4dc v) {
double dx = this.x - v.x();
double dy = this.y - v.y();
double dz = this.z - v.z();
double dw = this.w - v.w();
return Math.fma(dx, dx, Math.fma(dy, dy, Math.fma(dz, dz, dw * dw)));
}
public double distanceSquared(double x, double y, double z, double w) {
double dx = this.x - x;
double dy = this.y - y;
double dz = this.z - z;
double dw = this.w - w;
return Math.fma(dx, dx, Math.fma(dy, dy, Math.fma(dz, dz, dw * dw)));
}
/**
* Return the distance between (x1, y1, z1, w1)
and (x2, y2, z2, w2)
.
*
* @param x1
* the x component of the first vector
* @param y1
* the y component of the first vector
* @param z1
* the z component of the first vector
* @param w1
* the w component of the first vector
* @param x2
* the x component of the second vector
* @param y2
* the y component of the second vector
* @param z2
* the z component of the second vector
* @param w2
* the 2 component of the second vector
* @return the euclidean distance
*/
public static double distance(double x1, double y1, double z1, double w1, double x2, double y2, double z2, double w2) {
double dx = x1 - x2;
double dy = y1 - y2;
double dz = z1 - z2;
double dw = w1 - w2;
return Math.sqrt(Math.fma(dx, dx, Math.fma(dy, dy, Math.fma(dz, dz, dw * dw))));
}
/**
* Return the squared distance between (x1, y1, z1, w1)
and (x2, y2, z2, w2)
.
*
* @param x1
* the x component of the first vector
* @param y1
* the y component of the first vector
* @param z1
* the z component of the first vector
* @param w1
* the w component of the first vector
* @param x2
* the x component of the second vector
* @param y2
* the y component of the second vector
* @param z2
* the z component of the second vector
* @param w2
* the w component of the second vector
* @return the euclidean distance squared
*/
public static double distanceSquared(double x1, double y1, double z1, double w1, double x2, double y2, double z2, double w2) {
double dx = x1 - x2;
double dy = y1 - y2;
double dz = z1 - z2;
double dw = w1 - w2;
return Math.fma(dx, dx, Math.fma(dy, dy, Math.fma(dz, dz, dw * dw)));
}
public double dot(Vector4dc v) {
return Math.fma(this.x, v.x(), Math.fma(this.y, v.y(), Math.fma(this.z, v.z(), this.w * v.w())));
}
public double dot(double x, double y, double z, double w) {
return Math.fma(this.x, x, Math.fma(this.y, y, Math.fma(this.z, z, this.w * w)));
}
public double angleCos(Vector4dc v) {
double length1Squared = Math.fma(x, x, Math.fma(y, y, Math.fma(z, z, w * w)));
double length2Squared = Math.fma(v.x(), v.x(), Math.fma(v.y(), v.y(), Math.fma(v.z(), v.z(), v.w() * v.w())));
double dot = Math.fma(x, v.x(), Math.fma(y, v.y(), Math.fma(z, v.z(), w * v.w())));
return dot / Math.sqrt(length1Squared * length2Squared);
}
public double angle(Vector4dc v) {
double cos = angleCos(v);
// This is because sometimes cos goes above 1 or below -1 because of lost precision
cos = cos < 1 ? cos : 1;
cos = cos > -1 ? cos : -1;
return Math.acos(cos);
}
/**
* Set all components to zero.
*
* @return this
*/
public Vector4d zero() {
this.x = 0;
this.y = 0;
this.z = 0;
this.w = 0;
return this;
}
/**
* Negate this vector.
*
* @return this
*/
public Vector4d negate() {
this.x = -x;
this.y = -y;
this.z = -z;
this.w = -w;
return this;
}
public Vector4d negate(Vector4d dest) {
dest.x = -x;
dest.y = -y;
dest.z = -z;
dest.w = -w;
return dest;
}
/**
* Set the components of this vector to be the component-wise minimum of this and the other vector.
*
* @param v
* the other vector
* @return this
*/
public Vector4d min(Vector4dc v) {
this.x = x < v.x() ? x : v.x();
this.y = y < v.y() ? y : v.y();
this.z = z < v.z() ? z : v.z();
this.w = w < v.w() ? w : v.w();
return this;
}
public Vector4d min(Vector4dc v, Vector4d dest) {
dest.x = x < v.x() ? x : v.x();
dest.y = y < v.y() ? y : v.y();
dest.z = z < v.z() ? z : v.z();
dest.w = w < v.w() ? w : v.w();
return dest;
}
/**
* Set the components of this vector to be the component-wise maximum of this and the other vector.
*
* @param v
* the other vector
* @return this
*/
public Vector4d max(Vector4dc v) {
this.x = x > v.x() ? x : v.x();
this.y = y > v.y() ? y : v.y();
this.z = z > v.z() ? z : v.z();
this.w = w > v.w() ? w : v.w();
return this;
}
public Vector4d max(Vector4dc v, Vector4d dest) {
dest.x = x > v.x() ? x : v.x();
dest.y = y > v.y() ? y : v.y();
dest.z = z > v.z() ? z : v.z();
dest.w = w > v.w() ? w : v.w();
return dest;
}
/**
* Return a string representation of this vector.
*
* This method creates a new {@link DecimalFormat} on every invocation with the format string "0.000E0;-
".
*
* @return the string representation
*/
public String toString() {
return Runtime.formatNumbers(toString(Options.NUMBER_FORMAT));
}
/**
* Return a string representation of this vector by formatting the vector components with the given {@link NumberFormat}.
*
* @param formatter
* the {@link NumberFormat} used to format the vector components with
* @return the string representation
*/
public String toString(NumberFormat formatter) {
return "(" + Runtime.format(x, formatter) + " " + Runtime.format(y, formatter) + " " + Runtime.format(z, formatter) + " " + Runtime.format(w, formatter) + ")";
}
public void writeExternal(ObjectOutput out) throws IOException {
out.writeDouble(x);
out.writeDouble(y);
out.writeDouble(z);
out.writeDouble(w);
}
public void readExternal(ObjectInput in) throws IOException,
ClassNotFoundException {
x = in.readDouble();
y = in.readDouble();
z = in.readDouble();
w = in.readDouble();
}
public int hashCode() {
final int prime = 31;
int result = 1;
long temp;
temp = Double.doubleToLongBits(w);
result = prime * result + (int) (temp ^ (temp >>> 32));
temp = Double.doubleToLongBits(x);
result = prime * result + (int) (temp ^ (temp >>> 32));
temp = Double.doubleToLongBits(y);
result = prime * result + (int) (temp ^ (temp >>> 32));
temp = Double.doubleToLongBits(z);
result = prime * result + (int) (temp ^ (temp >>> 32));
return result;
}
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (getClass() != obj.getClass())
return false;
Vector4d other = (Vector4d) obj;
if (Double.doubleToLongBits(w) != Double.doubleToLongBits(other.w))
return false;
if (Double.doubleToLongBits(x) != Double.doubleToLongBits(other.x))
return false;
if (Double.doubleToLongBits(y) != Double.doubleToLongBits(other.y))
return false;
if (Double.doubleToLongBits(z) != Double.doubleToLongBits(other.z))
return false;
return true;
}
public boolean equals(Vector4dc v, double delta) {
if (this == v)
return true;
if (v == null)
return false;
if (!(v instanceof Vector4dc))
return false;
if (!Runtime.equals(x, v.x(), delta))
return false;
if (!Runtime.equals(y, v.y(), delta))
return false;
if (!Runtime.equals(z, v.z(), delta))
return false;
if (!Runtime.equals(w, v.w(), delta))
return false;
return true;
}
public boolean equals(double x, double y, double z, double w) {
if (Double.doubleToLongBits(this.x) != Double.doubleToLongBits(x))
return false;
if (Double.doubleToLongBits(this.y) != Double.doubleToLongBits(y))
return false;
if (Double.doubleToLongBits(this.z) != Double.doubleToLongBits(z))
return false;
if (Double.doubleToLongBits(this.w) != Double.doubleToLongBits(w))
return false;
return true;
}
public Vector4d smoothStep(Vector4dc v, double t, Vector4d dest) {
double t2 = t * t;
double t3 = t2 * t;
dest.x = (x + x - v.x() - v.x()) * t3 + (3.0 * v.x() - 3.0 * x) * t2 + x * t + x;
dest.y = (y + y - v.y() - v.y()) * t3 + (3.0 * v.y() - 3.0 * y) * t2 + y * t + y;
dest.z = (z + z - v.z() - v.z()) * t3 + (3.0 * v.z() - 3.0 * z) * t2 + z * t + z;
dest.w = (w + w - v.w() - v.w()) * t3 + (3.0 * v.w() - 3.0 * w) * t2 + w * t + w;
return dest;
}
public Vector4d hermite(Vector4dc t0, Vector4dc v1, Vector4dc t1, double t, Vector4d dest) {
double t2 = t * t;
double t3 = t2 * t;
dest.x = (x + x - v1.x() - v1.x() + t1.x() + t0.x()) * t3 + (3.0 * v1.x() - 3.0 * x - t0.x() - t0.x() - t1.x()) * t2 + x * t + x;
dest.y = (y + y - v1.y() - v1.y() + t1.y() + t0.y()) * t3 + (3.0 * v1.y() - 3.0 * y - t0.y() - t0.y() - t1.y()) * t2 + y * t + y;
dest.z = (z + z - v1.z() - v1.z() + t1.z() + t0.z()) * t3 + (3.0 * v1.z() - 3.0 * z - t0.z() - t0.z() - t1.z()) * t2 + z * t + z;
dest.w = (w + w - v1.w() - v1.w() + t1.w() + t0.w()) * t3 + (3.0 * v1.w() - 3.0 * w - t0.w() - t0.w() - t1.w()) * t2 + w * t + w;
return dest;
}
/**
* Linearly interpolate this
and other
using the given interpolation factor t
* and store the result in this
.
*
* If t
is 0.0
then the result is this
. If the interpolation factor is 1.0
* then the result is other
.
*
* @param other
* the other vector
* @param t
* the interpolation factor between 0.0 and 1.0
* @return this
*/
public Vector4d lerp(Vector4dc other, double t) {
this.x = Math.fma(other.x() - x, t, x);
this.y = Math.fma(other.y() - y, t, y);
this.z = Math.fma(other.z() - z, t, z);
this.w = Math.fma(other.w() - w, t, w);
return this;
}
public Vector4d lerp(Vector4dc other, double t, Vector4d dest) {
dest.x = Math.fma(other.x() - x, t, x);
dest.y = Math.fma(other.y() - y, t, y);
dest.z = Math.fma(other.z() - z, t, z);
dest.w = Math.fma(other.w() - w, t, w);
return dest;
}
public double get(int component) throws IllegalArgumentException {
switch (component) {
case 0:
return x;
case 1:
return y;
case 2:
return z;
case 3:
return w;
default:
throw new IllegalArgumentException();
}
}
public Vector4i get(int mode, Vector4i dest) {
dest.x = Math.roundUsing(this.x(), mode);
dest.y = Math.roundUsing(this.y(), mode);
dest.z = Math.roundUsing(this.z(), mode);
dest.w = Math.roundUsing(this.w(), mode);
return dest;
}
public Vector4f get(Vector4f dest) {
dest.x = (float) this.x();
dest.y = (float) this.y();
dest.z = (float) this.z();
dest.w = (float) this.w();
return dest;
}
public Vector4d get(Vector4d dest) {
dest.x = this.x();
dest.y = this.y();
dest.z = this.z();
dest.w = this.w();
return dest;
}
public int maxComponent() {
double absX = Math.abs(x);
double absY = Math.abs(y);
double absZ = Math.abs(z);
double absW = Math.abs(w);
if (absX >= absY && absX >= absZ && absX >= absW) {
return 0;
} else if (absY >= absZ && absY >= absW) {
return 1;
} else if (absZ >= absW) {
return 2;
}
return 3;
}
public int minComponent() {
double absX = Math.abs(x);
double absY = Math.abs(y);
double absZ = Math.abs(z);
double absW = Math.abs(w);
if (absX < absY && absX < absZ && absX < absW) {
return 0;
} else if (absY < absZ && absY < absW) {
return 1;
} else if (absZ < absW) {
return 2;
}
return 3;
}
/**
* Set each component of this vector to the largest (closest to positive
* infinity) {@code double} value that is less than or equal to that
* component and is equal to a mathematical integer.
*
* @return this
*/
public Vector4d floor() {
this.x = Math.floor(x);
this.y = Math.floor(y);
this.z = Math.floor(z);
this.w = Math.floor(w);
return this;
}
public Vector4d floor(Vector4d dest) {
dest.x = Math.floor(x);
dest.y = Math.floor(y);
dest.z = Math.floor(z);
dest.w = Math.floor(w);
return dest;
}
/**
* Set each component of this vector to the smallest (closest to negative
* infinity) {@code double} value that is greater than or equal to that
* component and is equal to a mathematical integer.
*
* @return this
*/
public Vector4d ceil() {
this.x = Math.ceil(x);
this.y = Math.ceil(y);
this.z = Math.ceil(z);
this.w = Math.ceil(w);
return this;
}
public Vector4d ceil(Vector4d dest) {
dest.x = Math.ceil(x);
dest.y = Math.ceil(y);
dest.z = Math.ceil(z);
dest.w = Math.ceil(w);
return dest;
}
/**
* Set each component of this vector to the closest double that is equal to
* a mathematical integer, with ties rounding to positive infinity.
*
* @return this
*/
public Vector4d round() {
this.x = Math.round(x);
this.y = Math.round(y);
this.z = Math.round(z);
this.w = Math.round(w);
return this;
}
public Vector4d round(Vector4d dest) {
dest.x = Math.round(x);
dest.y = Math.round(y);
dest.z = Math.round(z);
dest.w = Math.round(w);
return dest;
}
public boolean isFinite() {
return Math.isFinite(x) && Math.isFinite(y) && Math.isFinite(z) && Math.isFinite(w);
}
/**
* Compute the absolute of each of this vector's components.
*
* @return this
*/
public Vector4d absolute() {
this.x = Math.abs(x);
this.y = Math.abs(y);
this.z = Math.abs(z);
this.w = Math.abs(w);
return this;
}
public Vector4d absolute(Vector4d dest) {
dest.x = Math.abs(x);
dest.y = Math.abs(y);
dest.z = Math.abs(z);
dest.w = Math.abs(w);
return dest;
}
public Object clone() throws CloneNotSupportedException {
return super.clone();
}
}