org.jpmml.rexp.BoostingConverter Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pmml-rexp Show documentation
Show all versions of pmml-rexp Show documentation
JPMML R to PMML converter
The newest version!
/*
* Copyright (c) 2018 Villu Ruusmann
*
* This file is part of JPMML-R
*
* JPMML-R is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* JPMML-R is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with JPMML-R. If not, see .
*/
package org.jpmml.rexp;
import java.util.List;
import org.dmg.pmml.DataType;
import org.dmg.pmml.MiningFunction;
import org.dmg.pmml.Model;
import org.dmg.pmml.mining.MiningModel;
import org.dmg.pmml.mining.Segmentation;
import org.dmg.pmml.tree.TreeModel;
import org.jpmml.converter.CategoricalLabel;
import org.jpmml.converter.ModelUtil;
import org.jpmml.converter.Schema;
import org.jpmml.converter.mining.MiningModelUtil;
public class BoostingConverter extends AdaBagConverter {
public BoostingConverter(RGenericVector boosting){
super(boosting);
}
@Override
public Model encodeModel(Schema schema){
RGenericVector boosting = getObject();
RGenericVector trees = boosting.getGenericElement("trees");
RDoubleVector weights = boosting.getDoubleElement("weights");
CategoricalLabel categoricalLabel = (CategoricalLabel)schema.getLabel();
List treeModels = encodeTreeModels(trees);
MiningModel miningModel = new MiningModel(MiningFunction.CLASSIFICATION, ModelUtil.createMiningSchema(categoricalLabel))
.setSegmentation(MiningModelUtil.createSegmentation(Segmentation.MultipleModelMethod.WEIGHTED_MAJORITY_VOTE, Segmentation.MissingPredictionTreatment.RETURN_MISSING, treeModels, weights.getValues()))
.setOutput(ModelUtil.createProbabilityOutput(DataType.DOUBLE, categoricalLabel));
return miningModel;
}
}