org.jpmml.rexp.LRMConverter Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pmml-rexp Show documentation
Show all versions of pmml-rexp Show documentation
JPMML R to PMML converter
The newest version!
/*
* Copyright (c) 2017 Villu Ruusmann
*
* This file is part of JPMML-R
*
* JPMML-R is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* JPMML-R is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with JPMML-R. If not, see .
*/
package org.jpmml.rexp;
import java.util.List;
import org.dmg.pmml.DataField;
import org.dmg.pmml.DataType;
import org.dmg.pmml.MiningFunction;
import org.dmg.pmml.Model;
import org.dmg.pmml.general_regression.GeneralRegressionModel;
import org.jpmml.converter.CategoricalLabel;
import org.jpmml.converter.ContinuousLabel;
import org.jpmml.converter.Feature;
import org.jpmml.converter.ModelUtil;
import org.jpmml.converter.Schema;
import org.jpmml.converter.SchemaUtil;
import org.jpmml.converter.general_regression.GeneralRegressionModelUtil;
public class LRMConverter extends RMSConverter {
public LRMConverter(RGenericVector lrm){
super(lrm);
}
@Override
public void encodeSchema(RExpEncoder encoder){
RGenericVector lrm = getObject();
RIntegerVector freq = lrm.getIntegerElement("freq");
RStringVector freqNames = freq.dimnames(0);
super.encodeSchema(encoder);
ContinuousLabel continuousLabel = (ContinuousLabel)encoder.getLabel();
DataField dataField = (DataField)encoder.toCategorical(continuousLabel.getName(), freqNames.getValues());
encoder.setLabel(dataField);
}
@Override
public Model encodeModel(Schema schema){
RGenericVector lrm = getObject();
RDoubleVector coefficients = lrm.getDoubleElement("coefficients");
CategoricalLabel categoricalLabel = (CategoricalLabel)schema.getLabel();
SchemaUtil.checkSize(2, categoricalLabel);
Object targetCategory = categoricalLabel.getValue(1);
Double intercept = coefficients.getElement(getInterceptName(), false);
List extends Feature> features = schema.getFeatures();
SchemaUtil.checkSize(coefficients.size() - (intercept != null ? 1 : 0), features);
List featureCoefficients = getFeatureCoefficients(features, coefficients);
GeneralRegressionModel generalRegressionModel = new GeneralRegressionModel(GeneralRegressionModel.ModelType.GENERALIZED_LINEAR, MiningFunction.CLASSIFICATION, ModelUtil.createMiningSchema(categoricalLabel), null, null, null)
.setLinkFunction(GeneralRegressionModel.LinkFunction.LOGIT)
.setOutput(ModelUtil.createProbabilityOutput(DataType.DOUBLE, categoricalLabel));
GeneralRegressionModelUtil.encodeRegressionTable(generalRegressionModel, features, featureCoefficients, intercept, targetCategory);
return generalRegressionModel;
}
}