org.jpmml.rexp.ORMConverter Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pmml-rexp Show documentation
Show all versions of pmml-rexp Show documentation
JPMML R to PMML converter
The newest version!
/*
* Copyright (c) 2024 Villu Ruusmann
*
* This file is part of JPMML-R
*
* JPMML-R is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* JPMML-R is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with JPMML-R. If not, see .
*/
package org.jpmml.rexp;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import org.dmg.pmml.DataField;
import org.dmg.pmml.DataType;
import org.dmg.pmml.DerivedField;
import org.dmg.pmml.Model;
import org.dmg.pmml.OpType;
import org.dmg.pmml.OutputField;
import org.dmg.pmml.mining.Segmentation;
import org.dmg.pmml.regression.RegressionModel;
import org.jpmml.converter.ContinuousFeature;
import org.jpmml.converter.ContinuousLabel;
import org.jpmml.converter.Feature;
import org.jpmml.converter.ModelEncoder;
import org.jpmml.converter.ModelUtil;
import org.jpmml.converter.OrdinalLabel;
import org.jpmml.converter.Schema;
import org.jpmml.converter.mining.MiningModelUtil;
import org.jpmml.converter.regression.RegressionModelUtil;
public class ORMConverter extends RMSConverter {
public ORMConverter(RGenericVector orm){
super(orm);
}
@Override
public void encodeSchema(RExpEncoder encoder){
RGenericVector orm = getObject();
RStringVector yUnique = orm.getStringElement("yunique");
super.encodeSchema(encoder);
ContinuousLabel continuousLabel = (ContinuousLabel)encoder.getLabel();
DataField dataField = (DataField)encoder.toOrdinal(continuousLabel.getName(), yUnique.getValues());
// XXX
dataField.setDataType(DataType.STRING);
encoder.setLabel(dataField);
}
@Override
public Model encodeModel(Schema schema){
RGenericVector orm = getObject();
RStringVector family = orm.getStringElement("family");
RDoubleVector coefficients = orm.getDoubleElement("coefficients");
ModelEncoder encoder = schema.getEncoder();
OrdinalLabel ordinalLabel = (OrdinalLabel)schema.getLabel();
List extends Feature> features = schema.getFeatures();
List thresholdCoefficients = new ArrayList<>();
List featureCoefficients = new ArrayList<>();
for(int i = 0, max = (ordinalLabel.size() - 1); i < max; i++){
Double coefficient = coefficients.getValue(i);
coefficient = -1 * coefficient.doubleValue();
thresholdCoefficients.add(coefficient);
} // End for
for(Feature feature : features){
Double coefficient = getFeatureCoefficient(feature, coefficients);
featureCoefficients.add(coefficient);
}
Schema segmentSchema = schema.toAnonymousRegressorSchema(DataType.DOUBLE);
RegressionModel firstRegressionModel = RegressionModelUtil.createRegression(features, featureCoefficients, null, null, segmentSchema)
.setTargets(ModelUtil.createRescaleTargets(-1d, null, (ContinuousLabel)segmentSchema.getLabel()));
OutputField linpredOutputField = ModelUtil.createPredictedField("linpred", OpType.CONTINUOUS, DataType.DOUBLE);
DerivedField linpredField = encoder.createDerivedField(firstRegressionModel, linpredOutputField, true);
Feature feature = new ContinuousFeature(encoder, linpredField);
RegressionModel secondRegressionModel = RegressionModelUtil.createOrdinalClassification(feature, thresholdCoefficients, parseNormalizationMethod(family.asScalar()), true, schema);
return MiningModelUtil.createModelChain(Arrays.asList(firstRegressionModel, secondRegressionModel), Segmentation.MissingPredictionTreatment.RETURN_MISSING);
}
static
private RegressionModel.NormalizationMethod parseNormalizationMethod(String family){
switch(family){
case "logistic":
return RegressionModel.NormalizationMethod.LOGIT;
case "probit":
return RegressionModel.NormalizationMethod.PROBIT;
case "cauchit":
return RegressionModel.NormalizationMethod.CAUCHIT;
default:
throw new IllegalArgumentException(family);
}
}
}