org.jpmml.rexp.POLRConverter Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pmml-rexp Show documentation
Show all versions of pmml-rexp Show documentation
JPMML R to PMML converter
The newest version!
/*
* Copyright (c) 2024 Villu Ruusmann
*
* This file is part of JPMML-R
*
* JPMML-R is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* JPMML-R is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with JPMML-R. If not, see .
*/
package org.jpmml.rexp;
import java.util.Arrays;
import org.dmg.pmml.DataField;
import org.dmg.pmml.DataType;
import org.dmg.pmml.DerivedField;
import org.dmg.pmml.Model;
import org.dmg.pmml.OpType;
import org.dmg.pmml.OutputField;
import org.dmg.pmml.mining.Segmentation;
import org.dmg.pmml.regression.RegressionModel;
import org.jpmml.converter.ContinuousFeature;
import org.jpmml.converter.ContinuousLabel;
import org.jpmml.converter.Feature;
import org.jpmml.converter.ModelEncoder;
import org.jpmml.converter.ModelUtil;
import org.jpmml.converter.ScalarLabel;
import org.jpmml.converter.Schema;
import org.jpmml.converter.mining.MiningModelUtil;
import org.jpmml.converter.regression.RegressionModelUtil;
public class POLRConverter extends LMConverter {
public POLRConverter(RGenericVector polr){
super(polr);
}
@Override
public void encodeSchema(RExpEncoder encoder){
RGenericVector polr = getObject();
RStringVector lev = polr.getStringElement("lev");
super.encodeSchema(encoder);
ScalarLabel scalarLabel = (ScalarLabel)encoder.getLabel();
DataField dataField = (DataField)encoder.toOrdinal(scalarLabel.getName(), lev.getValues());
encoder.setLabel(dataField);
}
@Override
public Model encodeModel(Schema schema){
RGenericVector polr = getObject();
RStringVector method = polr.getStringElement("method");
RNumberVector> zeta = polr.getNumericElement("zeta");
ModelEncoder encoder = schema.getEncoder();
Schema segmentSchema = schema.toAnonymousRegressorSchema(DataType.DOUBLE);
RegressionModel firstRegressionModel = (RegressionModel)super.encodeModel(segmentSchema)
.setTargets(ModelUtil.createRescaleTargets(-1d, null, (ContinuousLabel)segmentSchema.getLabel()));
OutputField linpredOutputField = ModelUtil.createPredictedField("linpred", OpType.CONTINUOUS, DataType.DOUBLE);
DerivedField linpredField = encoder.createDerivedField(firstRegressionModel, linpredOutputField, true);
Feature feature = new ContinuousFeature(encoder, linpredField);
RegressionModel secondRegressionModel = RegressionModelUtil.createOrdinalClassification(feature, zeta.getValues(), parseNormalizationMethod(method.asScalar()), true, schema);
return MiningModelUtil.createModelChain(Arrays.asList(firstRegressionModel, secondRegressionModel), Segmentation.MissingPredictionTreatment.RETURN_MISSING);
}
static
private RegressionModel.NormalizationMethod parseNormalizationMethod(String method){
switch(method){
case "logistic":
return RegressionModel.NormalizationMethod.LOGIT;
case "probit":
return RegressionModel.NormalizationMethod.PROBIT;
case "loglog":
return RegressionModel.NormalizationMethod.LOGLOG;
case "cloglog":
return RegressionModel.NormalizationMethod.CLOGLOG;
case "cauchit":
return RegressionModel.NormalizationMethod.CAUCHIT;
default:
throw new IllegalArgumentException(method);
}
}
}