org.jpmml.rexp.ScorecardConverter Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pmml-rexp Show documentation
Show all versions of pmml-rexp Show documentation
JPMML R to PMML converter
The newest version!
/*
* Copyright (c) 2016 Villu Ruusmann
*
* This file is part of JPMML-R
*
* JPMML-R is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* JPMML-R is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with JPMML-R. If not, see .
*/
package org.jpmml.rexp;
import java.util.Collection;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map;
import org.dmg.pmml.MiningFunction;
import org.dmg.pmml.SimplePredicate;
import org.dmg.pmml.True;
import org.dmg.pmml.scorecard.Attribute;
import org.dmg.pmml.scorecard.Characteristic;
import org.dmg.pmml.scorecard.Characteristics;
import org.dmg.pmml.scorecard.Scorecard;
import org.jpmml.converter.BinaryFeature;
import org.jpmml.converter.Feature;
import org.jpmml.converter.FeatureUtil;
import org.jpmml.converter.ModelUtil;
import org.jpmml.converter.Schema;
import org.jpmml.converter.SchemaUtil;
public class ScorecardConverter extends GLMConverter {
public ScorecardConverter(RGenericVector glm){
super(glm);
}
@Override
public Scorecard encodeModel(Schema schema){
RGenericVector glm = getObject();
RDoubleVector coefficients = glm.getDoubleElement("coefficients");
RGenericVector family = glm.getGenericElement("family");
RGenericVector scConf = DecorationUtil.getGenericElement(glm, "sc.conf");
Double intercept = coefficients.getElement(LMConverter.INTERCEPT, false);
List extends Feature> features = schema.getFeatures();
SchemaUtil.checkSize(coefficients.size() - (intercept != null ? 1 : 0), features);
RNumberVector> odds = scConf.getNumericElement("odds");
RNumberVector> basePoints = scConf.getNumericElement("base_points");
RNumberVector> pdo = scConf.getNumericElement("pdo");
double factor = (pdo.asScalar()).doubleValue() / Math.log(2);
Map fieldCharacteristics = new LinkedHashMap<>();
for(Feature feature : features){
String name = feature.getName();
if(!(feature instanceof BinaryFeature)){
throw new IllegalArgumentException();
}
Double coefficient = getFeatureCoefficient(feature, coefficients);
Characteristic characteristic = fieldCharacteristics.get(name);
if(characteristic == null){
characteristic = new Characteristic()
.setName("score(" + FeatureUtil.getName(feature) + ")");
fieldCharacteristics.put(name, characteristic);
}
BinaryFeature binaryFeature = (BinaryFeature)feature;
SimplePredicate simplePredicate = new SimplePredicate(binaryFeature.getName(), SimplePredicate.Operator.EQUAL, binaryFeature.getValue());
Attribute attribute = new Attribute(simplePredicate)
.setPartialScore(formatScore(-1d * coefficient * factor));
characteristic.addAttributes(attribute);
}
Characteristics characteristics = new Characteristics();
Collection> entries = fieldCharacteristics.entrySet();
for(Map.Entry entry : entries){
Characteristic characteristic = entry.getValue();
Attribute attribute = new Attribute(True.INSTANCE)
.setPartialScore(0d);
characteristic.addAttributes(attribute);
characteristics.addCharacteristics(characteristic);
}
Scorecard scorecard = new Scorecard(MiningFunction.REGRESSION, ModelUtil.createMiningSchema(schema.getLabel()), characteristics)
.setInitialScore(formatScore((basePoints.asScalar()).doubleValue() - Math.log((odds.asScalar()).doubleValue()) * factor - (intercept != null ? intercept * factor : 0)))
.setUseReasonCodes(false);
return scorecard;
}
static
private Number formatScore(Double score){
return Math.round(score);
}
}