org.lenskit.basic.PopularItemRecommender Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of lenskit-core Show documentation
Show all versions of lenskit-core Show documentation
The core of LensKit, providing basic implementations and algorithm support.
The newest version!
/*
* LensKit, an open source recommender systems toolkit.
* Copyright 2010-2016 LensKit Contributors. See CONTRIBUTORS.md.
* Work on LensKit has been funded by the National Science Foundation under
* grants IIS 05-34939, 08-08692, 08-12148, and 10-17697.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
package org.lenskit.basic;
import it.unimi.dsi.fastutil.longs.LongArrayList;
import it.unimi.dsi.fastutil.longs.LongList;
import it.unimi.dsi.fastutil.longs.LongSet;
import org.lenskit.api.ItemBasedItemRecommender;
import org.lenskit.api.ItemRecommender;
import org.lenskit.api.ResultList;
import org.lenskit.data.dao.DataAccessObject;
import org.lenskit.data.entities.CommonAttributes;
import org.lenskit.data.ratings.InteractionStatistics;
import org.lenskit.results.Results;
import org.lenskit.util.collections.LongUtils;
import javax.annotation.Nullable;
import javax.inject.Inject;
import java.util.List;
import java.util.Set;
import java.util.function.LongPredicate;
import java.util.stream.IntStream;
import java.util.stream.LongStream;
/**
* Recommend the most popular items. More efficient than using a popularity rank scorer.
*/
public class PopularItemRecommender extends AbstractItemRecommender implements ItemRecommender, ItemBasedItemRecommender {
private final DataAccessObject data;
private final InteractionStatistics statistics;
/**
* Create a new popular item recommender.
* @param stats The interaction statistics.
*/
@Inject
public PopularItemRecommender(InteractionStatistics stats, DataAccessObject dao) {
data = dao;
statistics = stats;
}
private LongList recommendWithPredicate(int n, LongPredicate filter) {
LongList items = statistics.getItemsByPopularity();
LongList list = new LongArrayList(items.size());
LongStream str = IntStream.range(0, items.size()).mapToLong(items::getLong);
if (filter != null) {
str = str.filter(filter);
}
if (n > 0) {
str = str.limit(n);
}
str.forEachOrdered(list::add);
return list;
}
private LongList recommendWithSets(int n, @Nullable Set candidates, @Nullable Set exclude) {
LongSet cs = LongUtils.asLongSet(candidates);
LongSet es = LongUtils.asLongSet(exclude);
LongPredicate f;
if (cs != null) {
if (es != null) {
f = i -> cs.contains(i) && !es.contains(i);
} else {
f = cs::contains;
}
} else if (es != null) {
f = i -> !es.contains(i);
} else {
f = null;
}
return recommendWithPredicate(n, f);
}
@Override
public List recommendRelatedItems(long reference) {
return recommendRelatedItems(reference, -1);
}
@Override
public List recommendRelatedItems(long reference, int n) {
return recommendWithPredicate(n, i -> i != reference);
}
@Override
public List recommendRelatedItems(Set basket) {
return recommendRelatedItems(basket, -1);
}
@Override
public List recommendRelatedItems(Set basket, int n) {
LongSet lbk = LongUtils.asLongSet(basket);
return recommendWithPredicate(n, i -> !lbk.contains(i));
}
@Override
public LongList recommendRelatedItems(Set basket, int n, @Nullable Set candidates, @Nullable Set exclude) {
return recommendWithSets(n, candidates, exclude);
}
@Override
public ResultList recommendRelatedItemsWithDetails(Set basket, int n, @Nullable Set candidates, @Nullable Set exclude) {
return recommendRelatedItems(basket, n, candidates, exclude)
.stream()
.map(i -> Results.create(i, statistics.getInteractionCount(i)))
.collect(Results.listCollector());
}
@Override
protected LongList recommend(long user, int n, @Nullable LongSet candidates, @Nullable LongSet exclude) {
if (exclude == null) {
exclude = data.query(statistics.getEntityType())
.withAttribute(CommonAttributes.USER_ID, user)
.valueSet(CommonAttributes.ITEM_ID);
}
return recommendWithSets(n, candidates, exclude);
}
@Override
protected ResultList recommendWithDetails(long user, int n, @Nullable LongSet candidates, @Nullable LongSet exclude) {
return recommend(user, n, candidates, exclude)
.stream()
.map(i -> Results.create(i, statistics.getInteractionCount(i)))
.collect(Results.listCollector());
}
}