org.lenskit.bias.ItemAverageRatingBiasModelProvider Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of lenskit-core Show documentation
Show all versions of lenskit-core Show documentation
The core of LensKit, providing basic implementations and algorithm support.
The newest version!
/*
* LensKit, an open source recommender systems toolkit.
* Copyright 2010-2016 LensKit Contributors. See CONTRIBUTORS.md.
* Work on LensKit has been funded by the National Science Foundation under
* grants IIS 05-34939, 08-08692, 08-12148, and 10-17697.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
package org.lenskit.bias;
import it.unimi.dsi.fastutil.longs.Long2DoubleMap;
import it.unimi.dsi.fastutil.longs.Long2DoubleOpenHashMap;
import it.unimi.dsi.fastutil.longs.LongIterator;
import org.lenskit.data.ratings.RatingSummary;
import javax.inject.Inject;
import javax.inject.Provider;
/**
* Compute a bias model that returns items' average ratings. For an item \\(i\\), the global bias \\(b\\) plus the
* item bias \\(b_i\\) will equal the item's average rating. User biases are all zero.
*/
public class ItemAverageRatingBiasModelProvider implements Provider {
private final RatingSummary summary;
private final double damping;
@Inject
public ItemAverageRatingBiasModelProvider(RatingSummary rs, @BiasDamping double damp) {
summary = rs;
damping = damp;
}
@Override
public ItemBiasModel get() {
Long2DoubleMap offsets;
if (damping > 0) {
offsets = new Long2DoubleOpenHashMap();
LongIterator iter = summary.getItems().iterator();
while (iter.hasNext()) {
long item = iter.nextLong();
double off = summary.getItemOffset(item);
int count = summary.getItemRatingCount(item);
offsets.put(item, count * off / (count + damping));
}
} else {
offsets = summary.getItemOffets();
}
return new ItemBiasModel(summary.getGlobalMean(), offsets);
}
}