All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.luaj.vm2.LuaDouble Maven / Gradle / Ivy

There is a newer version: 3.0.1
Show newest version
/*******************************************************************************
* Copyright (c) 2009-2011 Luaj.org. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
* 
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
******************************************************************************/
package org.luaj.vm2;

import org.luaj.vm2.lib.MathLib;

/**
 * Extension of {@link LuaNumber} which can hold a Java double as its value. 
 * 

* These instance are not instantiated directly by clients, but indirectly * via the static functions {@link LuaValue#valueOf(int)} or {@link LuaValue#valueOf(double)} * functions. This ensures that values which can be represented as int * are wrapped in {@link LuaInteger} instead of {@link LuaDouble}. *

* Almost all API's implemented in LuaDouble are defined and documented in {@link LuaValue}. *

* However the constants {@link #NAN}, {@link #POSINF}, {@link #NEGINF}, * {@link #JSTR_NAN}, {@link #JSTR_POSINF}, and {@link #JSTR_NEGINF} may be useful * when dealing with Nan or Infinite values. *

* LuaDouble also defines functions for handling the unique math rules of lua devision and modulo in *

    *
  • {@link #ddiv(double, double)}
  • *
  • {@link #ddiv_d(double, double)}
  • *
  • {@link #dmod(double, double)}
  • *
  • {@link #dmod_d(double, double)}
  • *
*

* @see LuaValue * @see LuaNumber * @see LuaInteger * @see LuaValue#valueOf(int) * @see LuaValue#valueOf(double) */ public class LuaDouble extends LuaNumber { /** Constant LuaDouble representing NaN (not a number) */ public static final LuaDouble NAN = new LuaDouble( Double.NaN ); /** Constant LuaDouble representing positive infinity */ public static final LuaDouble POSINF = new LuaDouble( Double.POSITIVE_INFINITY ); /** Constant LuaDouble representing negative infinity */ public static final LuaDouble NEGINF = new LuaDouble( Double.NEGATIVE_INFINITY ); /** Constant String representation for NaN (not a number), "nan" */ public static final String JSTR_NAN = "nan"; /** Constant String representation for positive infinity, "inf" */ public static final String JSTR_POSINF = "inf"; /** Constant String representation for negative infinity, "-inf" */ public static final String JSTR_NEGINF = "-inf"; /** The value being held by this instance. */ final double v; public static LuaNumber valueOf(double d) { int id = (int) d; return d==id? (LuaNumber) LuaInteger.valueOf(id): (LuaNumber) new LuaDouble(d); } /** Don't allow ints to be boxed by DoubleValues */ private LuaDouble(double d) { this.v = d; } public int hashCode() { long l = Double.doubleToLongBits(v + 1); return ((int)(l>>32)) + (int) l; } public boolean islong() { return v == (long) v; } public byte tobyte() { return (byte) (long) v; } public char tochar() { return (char) (long) v; } public double todouble() { return v; } public float tofloat() { return (float) v; } public int toint() { return (int) (long) v; } public long tolong() { return (long) v; } public short toshort() { return (short) (long) v; } public double optdouble(double defval) { return v; } public int optint(int defval) { return (int) (long) v; } public LuaInteger optinteger(LuaInteger defval) { return LuaInteger.valueOf((int) (long)v); } public long optlong(long defval) { return (long) v; } public LuaInteger checkinteger() { return LuaInteger.valueOf( (int) (long) v ); } // unary operators public LuaValue neg() { return valueOf(-v); } // object equality, used for key comparison public boolean equals(Object o) { return o instanceof LuaDouble? ((LuaDouble)o).v == v: false; } // equality w/ metatable processing public LuaValue eq( LuaValue val ) { return val.raweq(v)? TRUE: FALSE; } public boolean eq_b( LuaValue val ) { return val.raweq(v); } // equality w/o metatable processing public boolean raweq( LuaValue val ) { return val.raweq(v); } public boolean raweq( double val ) { return v == val; } public boolean raweq( int val ) { return v == val; } // basic binary arithmetic public LuaValue add( LuaValue rhs ) { return rhs.add(v); } public LuaValue add( double lhs ) { return LuaDouble.valueOf(lhs + v); } public LuaValue sub( LuaValue rhs ) { return rhs.subFrom(v); } public LuaValue sub( double rhs ) { return LuaDouble.valueOf(v - rhs); } public LuaValue sub( int rhs ) { return LuaDouble.valueOf(v - rhs); } public LuaValue subFrom( double lhs ) { return LuaDouble.valueOf(lhs - v); } public LuaValue mul( LuaValue rhs ) { return rhs.mul(v); } public LuaValue mul( double lhs ) { return LuaDouble.valueOf(lhs * v); } public LuaValue mul( int lhs ) { return LuaDouble.valueOf(lhs * v); } public LuaValue pow( LuaValue rhs ) { return rhs.powWith(v); } public LuaValue pow( double rhs ) { return MathLib.dpow(v,rhs); } public LuaValue pow( int rhs ) { return MathLib.dpow(v,rhs); } public LuaValue powWith( double lhs ) { return MathLib.dpow(lhs,v); } public LuaValue powWith( int lhs ) { return MathLib.dpow(lhs,v); } public LuaValue div( LuaValue rhs ) { return rhs.divInto(v); } public LuaValue div( double rhs ) { return LuaDouble.ddiv(v,rhs); } public LuaValue div( int rhs ) { return LuaDouble.ddiv(v,rhs); } public LuaValue divInto( double lhs ) { return LuaDouble.ddiv(lhs,v); } public LuaValue mod( LuaValue rhs ) { return rhs.modFrom(v); } public LuaValue mod( double rhs ) { return LuaDouble.dmod(v,rhs); } public LuaValue mod( int rhs ) { return LuaDouble.dmod(v,rhs); } public LuaValue modFrom( double lhs ) { return LuaDouble.dmod(lhs,v); } /** Divide two double numbers according to lua math, and return a {@link LuaValue} result. * @param lhs Left-hand-side of the division. * @param rhs Right-hand-side of the division. * @return {@link LuaValue} for the result of the division, * taking into account positive and negiative infinity, and Nan * @see #ddiv_d(double, double) */ public static LuaValue ddiv(double lhs, double rhs) { return rhs!=0? valueOf( lhs / rhs ): lhs>0? POSINF: lhs==0? NAN: NEGINF; } /** Divide two double numbers according to lua math, and return a double result. * @param lhs Left-hand-side of the division. * @param rhs Right-hand-side of the division. * @return Value of the division, taking into account positive and negative infinity, and Nan * @see #ddiv(double, double) */ public static double ddiv_d(double lhs, double rhs) { return rhs!=0? lhs / rhs: lhs>0? Double.POSITIVE_INFINITY: lhs==0? Double.NaN: Double.NEGATIVE_INFINITY; } /** Take modulo double numbers according to lua math, and return a {@link LuaValue} result. * @param lhs Left-hand-side of the modulo. * @param rhs Right-hand-side of the modulo. * @return {@link LuaValue} for the result of the modulo, * using lua's rules for modulo * @see #dmod_d(double, double) */ public static LuaValue dmod(double lhs, double rhs) { return rhs!=0? valueOf( lhs-rhs*Math.floor(lhs/rhs) ): NAN; } /** Take modulo for double numbers according to lua math, and return a double result. * @param lhs Left-hand-side of the modulo. * @param rhs Right-hand-side of the modulo. * @return double value for the result of the modulo, * using lua's rules for modulo * @see #dmod(double, double) */ public static double dmod_d(double lhs, double rhs) { return rhs!=0? lhs-rhs*Math.floor(lhs/rhs): Double.NaN; } // relational operators public LuaValue lt( LuaValue rhs ) { return rhs.gt_b(v)? LuaValue.TRUE: FALSE; } public LuaValue lt( double rhs ) { return v < rhs? TRUE: FALSE; } public LuaValue lt( int rhs ) { return v < rhs? TRUE: FALSE; } public boolean lt_b( LuaValue rhs ) { return rhs.gt_b(v); } public boolean lt_b( int rhs ) { return v < rhs; } public boolean lt_b( double rhs ) { return v < rhs; } public LuaValue lteq( LuaValue rhs ) { return rhs.gteq_b(v)? LuaValue.TRUE: FALSE; } public LuaValue lteq( double rhs ) { return v <= rhs? TRUE: FALSE; } public LuaValue lteq( int rhs ) { return v <= rhs? TRUE: FALSE; } public boolean lteq_b( LuaValue rhs ) { return rhs.gteq_b(v); } public boolean lteq_b( int rhs ) { return v <= rhs; } public boolean lteq_b( double rhs ) { return v <= rhs; } public LuaValue gt( LuaValue rhs ) { return rhs.lt_b(v)? LuaValue.TRUE: FALSE; } public LuaValue gt( double rhs ) { return v > rhs? TRUE: FALSE; } public LuaValue gt( int rhs ) { return v > rhs? TRUE: FALSE; } public boolean gt_b( LuaValue rhs ) { return rhs.lt_b(v); } public boolean gt_b( int rhs ) { return v > rhs; } public boolean gt_b( double rhs ) { return v > rhs; } public LuaValue gteq( LuaValue rhs ) { return rhs.lteq_b(v)? LuaValue.TRUE: FALSE; } public LuaValue gteq( double rhs ) { return v >= rhs? TRUE: FALSE; } public LuaValue gteq( int rhs ) { return v >= rhs? TRUE: FALSE; } public boolean gteq_b( LuaValue rhs ) { return rhs.lteq_b(v); } public boolean gteq_b( int rhs ) { return v >= rhs; } public boolean gteq_b( double rhs ) { return v >= rhs; } // string comparison public int strcmp( LuaString rhs ) { typerror("attempt to compare number with string"); return 0; } public String tojstring() { /* if ( v == 0.0 ) { // never occurs in J2me long bits = Double.doubleToLongBits( v ); return ( bits >> 63 == 0 ) ? "0" : "-0"; } */ long l = (long) v; if ( l == v ) return Long.toString(l); if ( Double.isNaN(v) ) return JSTR_NAN; if ( Double.isInfinite(v) ) return (v<0? JSTR_NEGINF: JSTR_POSINF); return Float.toString((float)v); } public LuaString strvalue() { return LuaString.valueOf(tojstring()); } public LuaString optstring(LuaString defval) { return LuaString.valueOf(tojstring()); } public LuaValue tostring() { return LuaString.valueOf(tojstring()); } public String optjstring(String defval) { return tojstring(); } public LuaNumber optnumber(LuaNumber defval) { return this; } public boolean isnumber() { return true; } public boolean isstring() { return true; } public LuaValue tonumber() { return this; } public int checkint() { return (int) (long) v; } public long checklong() { return (long) v; } public LuaNumber checknumber() { return this; } public double checkdouble() { return v; } public String checkjstring() { return tojstring(); } public LuaString checkstring() { return LuaString.valueOf(tojstring()); } public boolean isvalidkey() { return !Double.isNaN(v); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy