rhino1.7.6.testsrc.tests.ecma.Math.15.8.2.18.js Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of rhino Show documentation
Show all versions of rhino Show documentation
Rhino is an open-source implementation of JavaScript written entirely in Java. It is typically
embedded into Java applications to provide scripting to end users.
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
gTestfile = '15.8.2.18.js';
/**
File Name: 15.8.2.18.js
ECMA Section: 15.8.2.18 tan( x )
Description: return an approximation to the tan of the
argument. argument is expressed in radians
special cases:
- if x is NaN result is NaN
- if x is 0 result is 0
- if x is -0 result is -0
- if x is Infinity or -Infinity result is NaN
Author: [email protected]
Date: 7 july 1997
*/
var SECTION = "15.8.2.18";
var VERSION = "ECMA_1";
startTest();
var TITLE = "Math.tan(x)";
var EXCLUDE = "true";
writeHeaderToLog( SECTION + " "+ TITLE);
new TestCase( SECTION,
"Math.tan.length",
1,
Math.tan.length );
new TestCase( SECTION,
"Math.tan()",
Number.NaN,
Math.tan() );
new TestCase( SECTION,
"Math.tan(void 0)",
Number.NaN,
Math.tan(void 0));
new TestCase( SECTION,
"Math.tan(null)",
0,
Math.tan(null) );
new TestCase( SECTION,
"Math.tan(false)",
0,
Math.tan(false) );
new TestCase( SECTION,
"Math.tan(NaN)",
Number.NaN,
Math.tan(Number.NaN) );
new TestCase( SECTION,
"Math.tan(0)",
0,
Math.tan(0));
new TestCase( SECTION,
"Math.tan(-0)",
-0,
Math.tan(-0));
new TestCase( SECTION,
"Math.tan(Infinity)",
Number.NaN,
Math.tan(Number.POSITIVE_INFINITY));
new TestCase( SECTION,
"Math.tan(-Infinity)",
Number.NaN,
Math.tan(Number.NEGATIVE_INFINITY));
new TestCase( SECTION,
"Math.tan(Math.PI/4)",
1,
Math.tan(Math.PI/4));
new TestCase( SECTION,
"Math.tan(3*Math.PI/4)",
-1,
Math.tan(3*Math.PI/4));
new TestCase( SECTION,
"Math.tan(Math.PI)",
-0,
Math.tan(Math.PI));
new TestCase( SECTION,
"Math.tan(5*Math.PI/4)",
1,
Math.tan(5*Math.PI/4));
new TestCase( SECTION,
"Math.tan(7*Math.PI/4)",
-1,
Math.tan(7*Math.PI/4));
new TestCase( SECTION,
"Infinity/Math.tan(-0)",
-Infinity,
Infinity/Math.tan(-0) );
/*
Arctan (x) ~ PI/2 - 1/x for large x. For x = 1.6x10^16, 1/x is about the last binary digit of double precision PI/2.
That is to say, perturbing PI/2 by this much is about the smallest rounding error possible.
This suggests that the answer Christine is getting and a real Infinity are "adjacent" results from the tangent function. I
suspect that tan (PI/2 + one ulp) is a negative result about the same size as tan (PI/2) and that this pair are the closest
results to infinity that the algorithm can deliver.
In any case, my call is that the answer we're seeing is "right". I suggest the test pass on any result this size or larger.
= C =
*/
new TestCase( SECTION,
"Math.tan(3*Math.PI/2) >= 5443000000000000",
true,
Math.tan(3*Math.PI/2) >= 5443000000000000 );
new TestCase( SECTION,
"Math.tan(Math.PI/2) >= 5443000000000000",
true,
Math.tan(Math.PI/2) >= 5443000000000000 );
test();
© 2015 - 2024 Weber Informatics LLC | Privacy Policy