All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.nd4j.linalg.eigen.Eigen Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/*
 *
 *  * Copyright 2015 Skymind,Inc.
 *  *
 *  *    Licensed under the Apache License, Version 2.0 (the "License");
 *  *    you may not use this file except in compliance with the License.
 *  *    You may obtain a copy of the License at
 *  *
 *  *        http://www.apache.org/licenses/LICENSE-2.0
 *  *
 *  *    Unless required by applicable law or agreed to in writing, software
 *  *    distributed under the License is distributed on an "AS IS" BASIS,
 *  *    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  *    See the License for the specific language governing permissions and
 *  *    limitations under the License.
 *
 *
 */

package org.nd4j.linalg.eigen;

import org.nd4j.linalg.api.complex.IComplexNDArray;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;

/**
 * Compute eigen values
 *
 * @author Adam Gibson
 */
public class Eigen {

    public static INDArray dummy = Nd4j.scalar(1);

    /**
     * Computes the eigenvalues of a general matrix.
     */
    public static IComplexNDArray eigenvalues(INDArray A) {
        assert A.rows() == A.columns();
        INDArray WR = Nd4j.create(A.rows(), A.rows());
        INDArray WI = WR.dup();
        Nd4j.getBlasWrapper().geev(
                'N',
                'N',
                A.dup(),
                WR,
                WI,
                dummy,
                dummy);
        return Nd4j.createComplex(WR, WI);
    }


    /**
     * Compute generalized eigenvalues of the problem A x = L B x.
     *
     * @param A symmetric Matrix A. Only the upper triangle will be considered.
     * @return a vector of eigenvalues L.
     */
    public static INDArray symmetricGeneralizedEigenvalues(INDArray A) {
        INDArray eigenvalues = Nd4j.create(A.rows());
        int isuppz[] = new int[2 * A.rows()];
        Nd4j.getBlasWrapper().syevr(
                'N',
                'A',
                'U',
                A.dup(),
                0,
                0,
                0,
                0,
                0,
                eigenvalues,
                Nd4j.ones(1),
                isuppz);
        return eigenvalues;

    }


    /**
     * Computes the eigenvalues and eigenvectors of a general matrix.
     * 

* For matlab users note the following from their documentation: * The columns of V present eigenvectors of A. The diagonal matrix D contains eigenvalues. *

* This is in reverse order of the matlab eig(A) call. * * @param A the ndarray to getFloat the eigen vectors for * @return 2 arrays representing W (eigen vectors) and V (normalized eigen vectors) */ public static IComplexNDArray[] eigenvectors(INDArray A) { assert A.columns() == A.rows(); // setting up result arrays INDArray WR = Nd4j.create(A.rows()); INDArray WI = WR.dup(); INDArray VR = Nd4j.create(A.rows(), A.rows()); INDArray VL = Nd4j.create(A.rows(), A.rows()); Nd4j.getBlasWrapper().geev( 'v', 'v', A.dup(), WR, WI, VL, VR); // transferring the result IComplexNDArray E = Nd4j.createComplex(WR, WI); IComplexNDArray V = Nd4j.createComplex(A.rows(), A.rows()); for (int i = 0; i < A.rows(); i++) { if (E.getComplex(i).isReal()) { IComplexNDArray column = Nd4j.createComplex(VR.getColumn(i)); V.putColumn(i, column); } else { IComplexNDArray v = Nd4j.createComplex(VR.getColumn(i), VR.getColumn(i + 1)); V.putColumn(i, v); V.putColumn(i + 1, v.conji()); i += 1; } } return new IComplexNDArray[]{Nd4j.diag(E), V}; } /** * Compute generalized eigenvalues of the problem A x = L B x. * * @param A symmetric Matrix A. Only the upper triangle will be considered. * @param B symmetric Matrix B. Only the upper triangle will be considered. * @return a vector of eigenvalues L. */ public static INDArray symmetricGeneralizedEigenvalues(INDArray A, INDArray B) { assert A.rows() == A.columns(); assert B.rows() == B.columns(); INDArray W = Nd4j.create(A.rows()); Nd4j.getBlasWrapper().sygvd(1, 'N', 'U', A.dup(), B.dup(), W); return W; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy