Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
*
* * Copyright 2015 Skymind,Inc.
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*
*
*/
package org.nd4j.linalg.convolution;
import org.nd4j.linalg.api.complex.IComplexNDArray;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.indexing.INDArrayIndex;
import org.nd4j.linalg.indexing.NDArrayIndex;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* Convolution is the
* code for applying
* the convolution operator.
*
*
* @author Adam Gibson
*/
public class Convolution {
private static Logger log = LoggerFactory.getLogger(Convolution.class);
public enum Type {
FULL, VALID, SAME
}
/**
* Default no-arg constructor.
*/
private Convolution() {
}
/**
*
* @param col
* @param stride
* @param padding
* @param height
* @param width
* @return
*/
public static INDArray col2im(INDArray col, int[] stride, int[] padding, int height, int width) {
return col2im(col, stride[0], stride[1], padding[0], padding[1], height, width);
}
/**
* Rearrange matrix
* columns into blocks
* @param col the column
* transposed image to convert
* @param sy stride y
* @param sx stride x
* @param ph padding height
* @param pw padding width
* @param h height
* @param w width
* @return
*/
public static INDArray col2im(INDArray col, int sy, int sx, int ph, int pw, int h, int w) {
//number of images
int n = col.size(0);
//number of columns
int c = col.size(1);
//kernel height
int kh = col.size(2);
//kernel width
int kw = col.size(3);
//out height
int outH = col.size(4);
//out width
int outW = col.size(5);
INDArray img = Nd4j.create(n,c,h + 2 * ph + sy - 1,w + 2 * pw + sx - 1);
for(int i = 0; i < kh; i++) {
//iterate over the kernel rows
int iLim = i + sy * outH;
for(int j = 0; j < kw; j++) {
//iterate over the kernel columns
int jLim = j + sx * outW;
INDArrayIndex[]indices = new INDArrayIndex[] {
NDArrayIndex.all(),
NDArrayIndex.all(),
NDArrayIndex.interval(i, sy, iLim),
NDArrayIndex.interval(j, sx, jLim)
};
INDArray get = img.get(indices);
INDArray colAdd = col.get(
NDArrayIndex.all()
, NDArrayIndex.all()
, NDArrayIndex.point(i)
,NDArrayIndex.point(j)
,NDArrayIndex.all()
,NDArrayIndex.all());
get.addi(colAdd);
img.put(indices,get);
}
}
//return the subset of the padded image relative to the height/width of the image and the padding width/height
return img.get(NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.interval(ph, ph + h), NDArrayIndex.interval(pw, pw + w));
}
/**
*
* @param img
* @param kernel
* @param stride
* @param padding
* @return
*/
public static INDArray im2col(INDArray img, int[] kernel, int[] stride, int[] padding) {
return im2col(img, kernel[0], kernel[1], stride[0], stride[1], padding[0], padding[1], 0, false);
}
/**
* Implement column formatted images
* @param img the image to process
* @param kh the kernel height
* @param kw the kernel width
* @param sy the stride along y
* @param sx the stride along x
* @param ph the padding width
* @param pw the padding height
* @param pval the padding value
* @param coverAll whether to cover the whole image or not
* @return the column formatted image
*
*/
public static INDArray im2col(INDArray img, int kh, int kw, int sy, int sx, int ph, int pw, int pval, boolean coverAll) {
//number of images
int n = img.size(0);
//number of channels (depth)
int c = img.size(1);
//image height
int h = img.size(2);
//image width
int w = img.size(3);
int outHeight = outSize(h, kh, sy, ph, coverAll);
int outWidth = outSize(w, kw, sx, pw, coverAll);
INDArray padded = Nd4j.pad(img, new int[][]{
{0, 0}
, {0, 0}
, {ph, ph + sy - 1}
,{pw, pw + sx - 1}}
, Nd4j.PadMode.CONSTANT);
INDArray ret = Nd4j.create(n, c, kh, kw, outHeight, outWidth);
for(int i = 0; i < kh; i++) {
//offset for the row based on the stride and output height
int iLim = i + sy * outHeight;
for(int j = 0; j < kw; j++) {
//offset for the column based on stride and output width
int jLim = j + sx * outWidth;
INDArray get = padded.get(
NDArrayIndex.all()
, NDArrayIndex.all()
, NDArrayIndex.interval(i, sy, iLim)
, NDArrayIndex.interval(j, sx, jLim));
ret.put(new INDArrayIndex[]{
NDArrayIndex.all()
,NDArrayIndex.all()
,NDArrayIndex.point(i)
,NDArrayIndex.point(j)
,NDArrayIndex.all()
,NDArrayIndex.all()}, get);
}
}
return ret;
}
/**
*
* The out size for a convolution
* @param size
* @param k
* @param s
* @param p
* @param coverAll
* @return
*/
public static int outSize(int size,int k,int s,int p, boolean coverAll) {
if (coverAll)
return (size + p * 2 - k + s - 1) / s + 1;
else
return (size + p * 2 - k) / s + 1;
}
/**
* 2d convolution (aka the last 2 dimensions
*
* @param input the input to op
* @param kernel the kernel to convolve with
* @param type
* @return
*/
public static INDArray conv2d(INDArray input, INDArray kernel, Type type) {
return Nd4j.getConvolution().conv2d(input, kernel, type);
}
/**
*
* @param input
* @param kernel
* @param type
* @return
*/
public static INDArray conv2d(IComplexNDArray input, IComplexNDArray kernel, Type type) {
return Nd4j.getConvolution().conv2d(input, kernel, type);
}
/**
* ND Convolution
*
* @param input the input to op
* @param kernel the kerrnel to op with
* @param type the type of convolution
* @param axes the axes to do the convolution along
* @return the convolution of the given input and kernel
*/
public static INDArray convn(INDArray input, INDArray kernel, Type type, int[] axes) {
return Nd4j.getConvolution().convn(input, kernel, type, axes);
}
/**
* ND Convolution
*
* @param input the input to op
* @param kernel the kernel to op with
* @param type the type of convolution
* @param axes the axes to do the convolution along
* @return the convolution of the given input and kernel
*/
public static IComplexNDArray convn(IComplexNDArray input, IComplexNDArray kernel, Type type, int[] axes) {
return Nd4j.getConvolution().convn(input, kernel, type, axes);
}
/**
* ND Convolution
*
* @param input the input to op
* @param kernel the kernel to op with
* @param type the type of convolution
* @return the convolution of the given input and kernel
*/
public static INDArray convn(INDArray input, INDArray kernel, Type type) {
return Nd4j.getConvolution().convn(input, kernel, type);
}
/**
* ND Convolution
*
* @param input the input to op
* @param kernel the kernel to op with
* @param type the type of convolution
* @return the convolution of the given input and kernel
*/
public static IComplexNDArray convn(IComplexNDArray input, IComplexNDArray kernel, Type type) {
return Nd4j.getConvolution().convn(input, kernel, type);
}
}