All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.nd4j.autodiff.samediff.config.FitConfig Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/*
 * Copyright (c) 2015-2019 Skymind, Inc.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Apache License, Version 2.0 which is available at
 * https://www.apache.org/licenses/LICENSE-2.0.
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

package org.nd4j.autodiff.samediff.config;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

import lombok.AccessLevel;
import lombok.Getter;
import lombok.NonNull;
import lombok.Setter;
import org.nd4j.autodiff.listeners.records.History;
import org.nd4j.autodiff.listeners.Listener;
import org.nd4j.autodiff.samediff.SameDiff;
import org.nd4j.autodiff.samediff.TrainingConfig;
import org.nd4j.common.base.Preconditions;
import org.nd4j.linalg.dataset.adapter.MultiDataSetIteratorAdapter;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import org.nd4j.linalg.dataset.api.iterator.MultiDataSetIterator;

/**
 * Configuration for a {@link SameDiff} training operation.
 * 

* Used in {@link SameDiff#fit()}. */ @Getter @Setter public class FitConfig { @Setter(AccessLevel.NONE) private SameDiff sd; private MultiDataSetIterator trainingData; private MultiDataSetIterator validationData = null; private int epochs = -1; private int validationFrequency = 1; @NonNull private List listeners = new ArrayList<>(); public FitConfig(@NonNull SameDiff sd) { this.sd = sd; } /** * Set the number of epochs to train for */ public FitConfig epochs(int epochs) { this.epochs = epochs; return this; } /** * Set the training data */ public FitConfig train(@NonNull MultiDataSetIterator trainingData) { this.trainingData = trainingData; return this; } /** * Set the training data */ public FitConfig train(@NonNull DataSetIterator trainingData) { return train(new MultiDataSetIteratorAdapter(trainingData)); } /** * Set the training data and number of epochs */ public FitConfig train(@NonNull MultiDataSetIterator trainingData, int epochs) { return train(trainingData).epochs(epochs); } /** * Set the training data and number of epochs */ public FitConfig train(@NonNull DataSetIterator trainingData, int epochs) { return train(trainingData).epochs(epochs); } /** * Set the validation data */ public FitConfig validate(MultiDataSetIterator validationData) { this.validationData = validationData; return this; } /** * Set the validation data */ public FitConfig validate(DataSetIterator validationData) { if (validationData == null) { return validate((MultiDataSetIterator) null); } else { return validate(new MultiDataSetIteratorAdapter(validationData)); } } /** * Set the validation frequency. Validation will be preformed once every so many epochs. *

* Specifically, validation will be preformed when i % validationFrequency == 0 */ public FitConfig validationFrequency(int validationFrequency) { this.validationFrequency = validationFrequency; return this; } /** * Set the validation data and frequency *

* Specifically, validation will be preformed when i % validationFrequency == 0 */ public FitConfig validate(MultiDataSetIterator validationData, int validationFrequency) { return validate(validationData).validationFrequency(validationFrequency); } /** * Set the validation data and frequency *

* Specifically, validation will be preformed when i % validationFrequency == 0 */ public FitConfig validate(DataSetIterator validationData, int validationFrequency) { return validate(validationData).validationFrequency(validationFrequency); } /** * Add listeners for this operation */ public FitConfig listeners(@NonNull Listener... listeners) { this.listeners.addAll(Arrays.asList(listeners)); return this; } private void validateConfig() { Preconditions.checkNotNull(trainingData, "Training data must not be null"); Preconditions.checkState(epochs > 0, "Epochs must be > 0, got %s", epochs); if (validationData != null) Preconditions.checkState(validationFrequency > 0, "Validation Frequency must be > 0 if validation data is given, got %s", validationFrequency); } /** * Do the training. * * @return a {@link History} object containing the history information for this training operation * (evaluations specified in the {@link TrainingConfig}, loss values, and timing information). */ public History exec() { validateConfig(); return sd.fit(trainingData, epochs, validationData, validationFrequency, listeners.toArray(new Listener[0])); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy