All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.nd4j.evaluation.regression.RegressionEvaluation Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/*******************************************************************************
 * Copyright (c) 2015-2018 Skymind, Inc.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Apache License, Version 2.0 which is available at
 * https://www.apache.org/licenses/LICENSE-2.0.
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 *
 * SPDX-License-Identifier: Apache-2.0
 ******************************************************************************/

package org.nd4j.evaluation.regression;

import lombok.Data;
import lombok.EqualsAndHashCode;
import lombok.val;
import org.nd4j.evaluation.BaseEvaluation;
import org.nd4j.evaluation.IEvaluation;
import org.nd4j.evaluation.IMetric;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.impl.reduce.same.ASum;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.common.primitives.Triple;
import org.nd4j.serde.jackson.shaded.NDArrayTextDeSerializer;
import org.nd4j.serde.jackson.shaded.NDArrayTextSerializer;
import org.nd4j.shade.jackson.databind.annotation.JsonDeserialize;
import org.nd4j.shade.jackson.databind.annotation.JsonSerialize;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

/**
 * Evaluation method for the evaluation of regression algorithms.
* Provides the following metrics, for each column:
* - MSE: mean squared error
* - MAE: mean absolute error
* - RMSE: root mean squared error
* - RSE: relative squared error
* - PC: pearson correlation coefficient
* - R^2: coefficient of determination
*
* See for example: http://www.saedsayad.com/model_evaluation_r.htm * For classification, see {@link Evaluation} * * @author Alex Black */ @Data @EqualsAndHashCode(callSuper = true) public class RegressionEvaluation extends BaseEvaluation { public enum Metric implements IMetric { MSE, MAE, RMSE, RSE, PC, R2; @Override public Class getEvaluationClass() { return RegressionEvaluation.class; } /** * @return True if the metric should be minimized, or false if the metric should be maximized. * For example, MSE of 0 is best, but R^2 of 1.0 is best */ @Override public boolean minimize(){ if(this == R2 || this == PC){ return false; } return true; } } public static final int DEFAULT_PRECISION = 5; @EqualsAndHashCode.Exclude //Exclude axis: otherwise 2 Evaluation instances could contain identical stats and fail equality protected int axis = 1; private boolean initialized; private List columnNames; private long precision; @JsonSerialize(using = NDArrayTextSerializer.class) @JsonDeserialize(using = NDArrayTextDeSerializer.class) private INDArray exampleCountPerColumn; //Necessary to account for per-output masking @JsonSerialize(using = NDArrayTextSerializer.class) @JsonDeserialize(using = NDArrayTextDeSerializer.class) private INDArray labelsSumPerColumn; //sum(actual) per column -> used to calculate mean @JsonSerialize(using = NDArrayTextSerializer.class) @JsonDeserialize(using = NDArrayTextDeSerializer.class) private INDArray sumSquaredErrorsPerColumn; //(predicted - actual)^2 @JsonSerialize(using = NDArrayTextSerializer.class) @JsonDeserialize(using = NDArrayTextDeSerializer.class) private INDArray sumAbsErrorsPerColumn; //abs(predicted-actial) @JsonSerialize(using = NDArrayTextSerializer.class) @JsonDeserialize(using = NDArrayTextDeSerializer.class) private INDArray currentMean; @JsonSerialize(using = NDArrayTextSerializer.class) @JsonDeserialize(using = NDArrayTextDeSerializer.class) private INDArray currentPredictionMean; @JsonSerialize(using = NDArrayTextSerializer.class) @JsonDeserialize(using = NDArrayTextDeSerializer.class) private INDArray sumOfProducts; @JsonSerialize(using = NDArrayTextSerializer.class) @JsonDeserialize(using = NDArrayTextDeSerializer.class) private INDArray sumSquaredLabels; @JsonSerialize(using = NDArrayTextSerializer.class) @JsonDeserialize(using = NDArrayTextDeSerializer.class) private INDArray sumSquaredPredicted; @JsonSerialize(using = NDArrayTextSerializer.class) @JsonDeserialize(using = NDArrayTextDeSerializer.class) private INDArray sumLabels; protected RegressionEvaluation(int axis, List columnNames, long precision){ this.axis = axis; this.columnNames = columnNames; this.precision = precision; } public RegressionEvaluation() { this(null, DEFAULT_PRECISION); } /** Create a regression evaluation object with the specified number of columns, and default precision * for the stats() method. * @param nColumns Number of columns */ public RegressionEvaluation(long nColumns) { this(createDefaultColumnNames(nColumns), DEFAULT_PRECISION); } /** Create a regression evaluation object with the specified number of columns, and specified precision * for the stats() method. * @param nColumns Number of columns */ public RegressionEvaluation(long nColumns, long precision) { this(createDefaultColumnNames(nColumns), precision); } /** Create a regression evaluation object with default precision for the stats() method * @param columnNames Names of the columns */ public RegressionEvaluation(String... columnNames) { this(columnNames == null || columnNames.length == 0 ? null : Arrays.asList(columnNames), DEFAULT_PRECISION); } /** Create a regression evaluation object with default precision for the stats() method * @param columnNames Names of the columns */ public RegressionEvaluation(List columnNames) { this(columnNames, DEFAULT_PRECISION); } /** Create a regression evaluation object with specified precision for the stats() method * @param columnNames Names of the columns */ public RegressionEvaluation(List columnNames, long precision) { this.precision = precision; if (columnNames == null || columnNames.isEmpty()) { initialized = false; } else { this.columnNames = columnNames; initialize(columnNames.size()); } } /** * Set the axis for evaluation - this is the dimension along which the probability (and label classes) are present.
* For DL4J, this can be left as the default setting (axis = 1).
* Axis should be set as follows:
* For 2D (OutputLayer), shape [minibatch, numClasses] - axis = 1
* For 3D, RNNs/CNN1D (DL4J RnnOutputLayer), NCW format, shape [minibatch, numClasses, sequenceLength] - axis = 1
* For 3D, RNNs/CNN1D (DL4J RnnOutputLayer), NWC format, shape [minibatch, sequenceLength, numClasses] - axis = 2
* For 4D, CNN2D (DL4J CnnLossLayer), NCHW format, shape [minibatch, channels, height, width] - axis = 1
* For 4D, CNN2D, NHWC format, shape [minibatch, height, width, channels] - axis = 3
* * @param axis Axis to use for evaluation */ public void setAxis(int axis){ this.axis = axis; } /** * Get the axis - see {@link #setAxis(int)} for details */ public int getAxis(){ return axis; } @Override public void reset() { initialized = false; } private void initialize(int n) { if (columnNames == null || columnNames.size() != n) { columnNames = createDefaultColumnNames(n); } exampleCountPerColumn = Nd4j.zeros(DataType.DOUBLE, n); labelsSumPerColumn = Nd4j.zeros(DataType.DOUBLE, n); sumSquaredErrorsPerColumn = Nd4j.zeros(DataType.DOUBLE, n); sumAbsErrorsPerColumn = Nd4j.zeros(DataType.DOUBLE, n); currentMean = Nd4j.zeros(DataType.DOUBLE, n); currentPredictionMean = Nd4j.zeros(DataType.DOUBLE, n); sumOfProducts = Nd4j.zeros(DataType.DOUBLE, n); sumSquaredLabels = Nd4j.zeros(DataType.DOUBLE, n); sumSquaredPredicted = Nd4j.zeros(DataType.DOUBLE, n); sumLabels = Nd4j.zeros(DataType.DOUBLE, n); initialized = true; } private static List createDefaultColumnNames(long nColumns) { List list = new ArrayList<>((int) nColumns); for (int i = 0; i < nColumns; i++) list.add("col_" + i); return list; } @Override public void eval(INDArray labels, INDArray predictions) { eval(labels, predictions, (INDArray) null); } @Override public void eval(INDArray labels, INDArray networkPredictions, INDArray maskArray, List recordMetaData) { eval(labels, networkPredictions, maskArray); } @Override public void eval(INDArray labelsArr, INDArray predictionsArr, INDArray maskArr) { Triple p = BaseEvaluation.reshapeAndExtractNotMasked(labelsArr, predictionsArr, maskArr, axis); INDArray labels = p.getFirst(); INDArray predictions = p.getSecond(); INDArray maskArray = p.getThird(); if(labels.dataType() != predictions.dataType()) labels = labels.castTo(predictions.dataType()); if (!initialized) { initialize((int) labels.size(1)); } //References for the calculations is this section: //https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Online_algorithm //https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient#For_a_sample //Doing online calculation of means, sum of squares, etc. if (columnNames.size() != labels.size(1) || columnNames.size() != predictions.size(1)) { throw new IllegalArgumentException( "Number of the columns of labels and predictions must match specification (" + columnNames.size() + "). Got " + labels.size(1) + " and " + predictions.size(1)); } if (maskArray != null) { //Handle per-output masking. We are assuming *binary* masks here labels = labels.mul(maskArray); predictions = predictions.mul(maskArray); } labelsSumPerColumn.addi(labels.sum(0).castTo(labelsSumPerColumn.dataType())); INDArray error = predictions.sub(labels); INDArray absErrorSum = Nd4j.getExecutioner().exec(new ASum(error, 0)); INDArray squaredErrorSum = error.mul(error).sum(0); sumAbsErrorsPerColumn.addi(absErrorSum.castTo(labelsSumPerColumn.dataType())); sumSquaredErrorsPerColumn.addi(squaredErrorSum.castTo(labelsSumPerColumn.dataType())); sumOfProducts.addi(labels.mul(predictions).sum(0).castTo(labelsSumPerColumn.dataType())); sumSquaredLabels.addi(labels.mul(labels).sum(0).castTo(labelsSumPerColumn.dataType())); sumSquaredPredicted.addi(predictions.mul(predictions).sum(0).castTo(labelsSumPerColumn.dataType())); val nRows = labels.size(0); INDArray newExampleCountPerColumn; if (maskArray == null) { newExampleCountPerColumn = exampleCountPerColumn.add(nRows); } else { newExampleCountPerColumn = exampleCountPerColumn.add(maskArray.sum(0).castTo(labelsSumPerColumn.dataType())); } currentMean.muliRowVector(exampleCountPerColumn).addi(labels.sum(0).castTo(labelsSumPerColumn.dataType())).diviRowVector(newExampleCountPerColumn); currentPredictionMean.muliRowVector(exampleCountPerColumn).addi(predictions.sum(0).castTo(labelsSumPerColumn.dataType())) .divi(newExampleCountPerColumn); exampleCountPerColumn = newExampleCountPerColumn; sumLabels.addi(labels.sum(0).castTo(labelsSumPerColumn.dataType())); } @Override public void merge(RegressionEvaluation other) { if (other.labelsSumPerColumn == null) { //Other RegressionEvaluation is empty -> no op return; } else if (labelsSumPerColumn == null) { //This RegressionEvaluation is empty -> just copy over from the other one... this.columnNames = other.columnNames; this.precision = other.precision; this.exampleCountPerColumn = other.exampleCountPerColumn; this.labelsSumPerColumn = other.labelsSumPerColumn.dup(); this.sumSquaredErrorsPerColumn = other.sumSquaredErrorsPerColumn.dup(); this.sumAbsErrorsPerColumn = other.sumAbsErrorsPerColumn.dup(); this.currentMean = other.currentMean.dup(); this.currentPredictionMean = other.currentPredictionMean.dup(); this.sumOfProducts = other.sumOfProducts.dup(); this.sumSquaredLabels = other.sumSquaredLabels.dup(); this.sumSquaredPredicted = other.sumSquaredPredicted.dup(); return; } this.labelsSumPerColumn.addi(other.labelsSumPerColumn); this.sumSquaredErrorsPerColumn.addi(other.sumSquaredErrorsPerColumn); this.sumAbsErrorsPerColumn.addi(other.sumAbsErrorsPerColumn); this.currentMean.muliRowVector(exampleCountPerColumn) .addi(other.currentMean.mulRowVector(other.exampleCountPerColumn)) .diviRowVector(exampleCountPerColumn.add(other.exampleCountPerColumn)); this.currentPredictionMean.muliRowVector(exampleCountPerColumn) .addi(other.currentPredictionMean.mulRowVector(other.exampleCountPerColumn)) .diviRowVector(exampleCountPerColumn.add(other.exampleCountPerColumn)); this.sumOfProducts.addi(other.sumOfProducts); this.sumSquaredLabels.addi(other.sumSquaredLabels); this.sumSquaredPredicted.addi(other.sumSquaredPredicted); this.exampleCountPerColumn.addi(other.exampleCountPerColumn); } public String stats() { if (!initialized) { return "RegressionEvaluation: No Data"; } else { if (columnNames == null) columnNames = createDefaultColumnNames(numColumns()); int maxLabelLength = 0; for (String s : columnNames) maxLabelLength = Math.max(maxLabelLength, s.length()); int labelWidth = maxLabelLength + 5; long columnWidth = precision + 10; String resultFormat = "%-" + labelWidth + "s" + "%-" + columnWidth + "." + precision + "e" + //MSE "%-" + columnWidth + "." + precision + "e" + //MAE "%-" + columnWidth + "." + precision + "e" + //RMSE "%-" + columnWidth + "." + precision + "e" + //RSE "%-" + columnWidth + "." + precision + "e" + //PC "%-" + columnWidth + "." + precision + "e"; //R2 //Print header: StringBuilder sb = new StringBuilder(); String headerFormat = "%-" + labelWidth + "s" + "%-" + columnWidth + "s" + // MSE "%-" + columnWidth + "s" + // MAE "%-" + columnWidth + "s" + // RMSE "%-" + columnWidth + "s" + // RSE "%-" + columnWidth + "s" + // PC "%-" + columnWidth + "s"; // R2 sb.append(String.format(headerFormat, "Column", "MSE", "MAE", "RMSE", "RSE", "PC", "R^2")); sb.append("\n"); //Print results for each column: for (int i = 0; i < columnNames.size(); i++) { String name = columnNames.get(i); double mse = meanSquaredError(i); double mae = meanAbsoluteError(i); double rmse = rootMeanSquaredError(i); double rse = relativeSquaredError(i); double corr = pearsonCorrelation(i); double r2 = rSquared(i); sb.append(String.format(resultFormat, name, mse, mae, rmse, rse, corr, r2)); sb.append("\n"); } return sb.toString(); } } public int numColumns() { if (columnNames == null) { if (exampleCountPerColumn == null) { return 0; } return (int) exampleCountPerColumn.size(1); } return columnNames.size(); } public double meanSquaredError(int column) { //mse per column: 1/n * sum((predicted-actual)^2) return sumSquaredErrorsPerColumn.getDouble(column) / exampleCountPerColumn.getDouble(column); } public double meanAbsoluteError(int column) { //mse per column: 1/n * |predicted-actual| return sumAbsErrorsPerColumn.getDouble(column) / exampleCountPerColumn.getDouble(column); } public double rootMeanSquaredError(int column) { //rmse per column: sqrt(1/n * sum((predicted-actual)^2) return Math.sqrt(sumSquaredErrorsPerColumn.getDouble(column) / exampleCountPerColumn.getDouble(column)); } /** * Legacy method for the correlation score. * * @param column Column to evaluate * @return Pearson Correlation for the given column * @see {@link #pearsonCorrelation(int)} * @deprecated Use {@link #pearsonCorrelation(int)} instead. * For the R2 score use {@link #rSquared(int)}. */ @Deprecated public double correlationR2(int column) { return pearsonCorrelation(column); } /** * Pearson Correlation Coefficient for samples * * @param column Column to evaluate * @return Pearson Correlation Coefficient for column with index {@code column} * @see Wikipedia */ public double pearsonCorrelation(int column) { double sumxiyi = sumOfProducts.getDouble(column); double predictionMean = currentPredictionMean.getDouble(column); double labelMean = currentMean.getDouble(column); double sumSquaredLabels = this.sumSquaredLabels.getDouble(column); double sumSquaredPredicted = this.sumSquaredPredicted.getDouble(column); double exampleCount = exampleCountPerColumn.getDouble(column); double r = sumxiyi - exampleCount * predictionMean * labelMean; r /= Math.sqrt(sumSquaredLabels - exampleCount * labelMean * labelMean) * Math.sqrt(sumSquaredPredicted - exampleCount * predictionMean * predictionMean); return r; } /** * Coefficient of Determination (R^2 Score) * * @param column Column to evaluate * @return R^2 score for column with index {@code column} * @see Wikipedia */ public double rSquared(int column) { //ss_tot = sum_i (label_i - mean(labels))^2 // = (sum_i label_i^2) + mean(labels) * (n * mean(labels) - 2 * sum_i label_i) double sumLabelSquared = sumSquaredLabels.getDouble(column); double meanLabel = currentMean.getDouble(column); double sumLabel = sumLabels.getDouble(column); double n = exampleCountPerColumn.getDouble(column); double sstot = sumLabelSquared + meanLabel * (n * meanLabel - 2 * sumLabel); double ssres = sumSquaredErrorsPerColumn.getDouble(column); return (sstot - ssres) / sstot; } public double relativeSquaredError(int column) { // RSE: sum(predicted-actual)^2 / sum(actual-labelsMean)^2 // (sum(predicted^2) - 2 * sum(predicted * actual) + sum(actual ^ 2)) / (sum(actual ^ 2) - n * actualMean) double numerator = sumSquaredPredicted.getDouble(column) - 2 * sumOfProducts.getDouble(column) + sumSquaredLabels.getDouble(column); double denominator = sumSquaredLabels.getDouble(column) - exampleCountPerColumn.getDouble(column) * currentMean.getDouble(column) * currentMean.getDouble(column); if (Math.abs(denominator) > Nd4j.EPS_THRESHOLD) { return numerator / denominator; } else { return Double.POSITIVE_INFINITY; } } /** * Average MSE across all columns * @return */ public double averageMeanSquaredError() { double ret = 0.0; for (int i = 0; i < numColumns(); i++) { ret += meanSquaredError(i); } return ret / (double) numColumns(); } /** * Average MAE across all columns * @return */ public double averageMeanAbsoluteError() { double ret = 0.0; for (int i = 0; i < numColumns(); i++) { ret += meanAbsoluteError(i); } return ret / (double) numColumns(); } /** * Average RMSE across all columns * @return */ public double averagerootMeanSquaredError() { double ret = 0.0; for (int i = 0; i < numColumns(); i++) { ret += rootMeanSquaredError(i); } return ret / (double) numColumns(); } /** * Average RSE across all columns * @return */ public double averagerelativeSquaredError() { double ret = 0.0; for (int i = 0; i < numColumns(); i++) { ret += relativeSquaredError(i); } return ret / (double) numColumns(); } /** * Legacy method for the correlation average across all columns. * * @return Pearson Correlation averaged over all columns * @see {@link #averagePearsonCorrelation()} * @deprecated Use {@link #averagePearsonCorrelation()} instead. * For the R2 score use {@link #averageRSquared()}. */ @Deprecated public double averagecorrelationR2() { return averagePearsonCorrelation(); } /** * Average Pearson Correlation Coefficient across all columns * * @return Pearson Correlation Coefficient across all columns */ public double averagePearsonCorrelation() { double ret = 0.0; for (int i = 0; i < numColumns(); i++) { ret += pearsonCorrelation(i); } return ret / (double) numColumns(); } /** * Average R2 across all columns * * @return R2 score accross all columns */ public double averageRSquared() { double ret = 0.0; for (int i = 0; i < numColumns(); i++) { ret += rSquared(i); } return ret / (double) numColumns(); } @Override public double getValue(IMetric metric){ if(metric instanceof Metric){ return scoreForMetric((Metric) metric); } else throw new IllegalStateException("Can't get value for non-regression Metric " + metric); } public double scoreForMetric(Metric metric){ switch (metric){ case MSE: return averageMeanSquaredError(); case MAE: return averageMeanAbsoluteError(); case RMSE: return averagerootMeanSquaredError(); case RSE: return averagerelativeSquaredError(); case PC: return averagePearsonCorrelation(); case R2: return averageRSquared(); default: throw new IllegalStateException("Unknown metric: " + metric); } } public static RegressionEvaluation fromJson(String json){ return fromJson(json, RegressionEvaluation.class); } @Override public RegressionEvaluation newInstance() { return new RegressionEvaluation(axis, columnNames, precision); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy