Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
org.nd4j.linalg.api.ops.BaseReduceFloatOp Maven / Gradle / Ivy
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.nd4j.linalg.api.ops;
import org.nd4j.autodiff.samediff.SDVariable;
import org.nd4j.autodiff.samediff.SameDiff;
import org.nd4j.common.base.Preconditions;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.shape.LongShapeDescriptor;
import org.nd4j.linalg.api.shape.Shape;
import org.nd4j.linalg.factory.Nd4j;
import java.util.Collections;
import java.util.List;
public abstract class BaseReduceFloatOp extends BaseReduceOp implements ReduceFloatOp {
public BaseReduceFloatOp(INDArray x, INDArray y, INDArray z, boolean keepDims, int... dimensions){
super(x, y, z, keepDims, dimensions);
}
protected BaseReduceFloatOp(SameDiff sameDiff, SDVariable i_v, boolean keepDims, int[] dimensions) {
super(sameDiff, i_v, dimensions, keepDims);
}
protected BaseReduceFloatOp(SameDiff sameDiff, SDVariable i_v, SDVariable i_v2, int[] dimensions) {
super(sameDiff, i_v, i_v2, dimensions);
}
protected BaseReduceFloatOp(SameDiff sameDiff, SDVariable input, int[] dimensions, boolean keepDims) {
super(sameDiff, input, dimensions, keepDims);
}
protected BaseReduceFloatOp(SameDiff sameDiff, SDVariable input, int... dimensions) {
super(sameDiff, input, dimensions);
}
public BaseReduceFloatOp(INDArray input, INDArray output, boolean keepDims, int... dimensions){
super(input, null, output, dimensions);
this.keepDims = keepDims;
this.dimensions = dimensions;
}
public BaseReduceFloatOp(INDArray x, INDArray y, INDArray z, int... dimensions) {
super(x, y, z, dimensions);
}
public BaseReduceFloatOp(INDArray x, INDArray z, int... dimensions) {
super(x, null, z, dimensions);
}
public BaseReduceFloatOp(INDArray x, boolean keepDims, int... dimensions) {
super(x, keepDims, dimensions);
}
public BaseReduceFloatOp(INDArray x, int... dimensions) {
super(x, dimensions);
}
protected BaseReduceFloatOp() {
super();
}
@Override
public Type opType() {
return Type.REDUCE_FLOAT;
}
@Override
public Type getOpType() {
return opType();
}
@Override
public DataType resultType() {
return resultType(null);
}
@Override
public DataType resultType(OpContext oc) {
INDArray x = oc != null ? oc.getInputArray(0) : x();
if (x != null && x.isR())
return x.dataType();
return Nd4j.defaultFloatingPointType();
}
@Override
public boolean validateDataTypes(OpContext oc) {
INDArray x = oc != null ? oc.getInputArray(0) : x();
INDArray y = oc != null ? oc.getInputArray(1) : y();
if (y != null)
Preconditions.checkArgument(x.dataType() == y.dataType(),
"Op.X [%s] type must be the same as Op.Y [%s] for op %s: x.shape=%ndShape, y.shape=%ndShape", x.dataType(),
y.dataType(), getClass().getName(), x, y );
INDArray z = oc != null ? oc.getOutputArray(0) : z();
if (z != null)
Preconditions.checkArgument(z.isR(),"Op.Z (result array) must be one of floating types: z datatype = %s", z.dataType());
return true;
}
@Override
public List calculateOutputShape() {
return calculateOutputShape(null);
}
@Override
public List calculateOutputShape(OpContext oc) {
INDArray x = oc != null ? oc.getInputArray(0) : x();
if(x == null)
return Collections.emptyList();
//Calculate reduction shape. Note that reduction on scalar - returns a scalar
long[] reducedShape = x.rank() == 0 ? x.shape() : Shape.getReducedShape(x.shape(),dimensions, isKeepDims());
DataType retType = arg().dataType();
if(!retType.isFPType())
retType = Nd4j.defaultFloatingPointType();
return Collections.singletonList(LongShapeDescriptor.fromShape(reducedShape, retType));
}
@Override
public List calculateOutputDataTypes(List dataTypes){
//Second input is dynamic axis arg
Preconditions.checkState(dataTypes != null && (dataTypes.size() == 1 || dataTypes.size() == 2),
"Expected 1 or 2 input datatype for %s, got input %s", getClass(), dataTypes);
Preconditions.checkState(dataTypes.size() == 1 || dataTypes.get(1).isIntType(), "When executing reductions" +
"with 2 inputs, second input (axis) must be an integer datatype for %s, got %s", getClass(), dataTypes);
if(dataTypes.get(0).isFPType())
return Collections.singletonList(dataTypes.get(0));
return Collections.singletonList(Nd4j.defaultFloatingPointType());
}
}