All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.nd4j.linalg.api.ops.custom.BitCast Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/* ******************************************************************************
 * Copyright (c) 2019 Konduit K.K.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Apache License, Version 2.0 which is available at
 * https://www.apache.org/licenses/LICENSE-2.0.
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 *
 * SPDX-License-Identifier: Apache-2.0
 ******************************************************************************/
package org.nd4j.linalg.api.ops.custom;

import lombok.val;
import org.nd4j.autodiff.samediff.SDVariable;
import org.nd4j.autodiff.samediff.SameDiff;
import org.nd4j.common.base.Preconditions;
import org.nd4j.imports.graphmapper.tf.TFGraphMapper;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.DynamicCustomOp;
import org.nd4j.linalg.api.shape.options.ArrayOptionsHelper;
import org.tensorflow.framework.AttrValue;
import org.tensorflow.framework.GraphDef;
import org.tensorflow.framework.NodeDef;

import java.util.Collections;
import java.util.List;
import java.util.Map;

public class BitCast extends DynamicCustomOp {
    public BitCast() {}

    private DataType dtype;

    public BitCast(INDArray in, DataType dataType, INDArray out) {
        this(in, dataType.toInt(), out);
    }

    public BitCast(INDArray in, int dataType, INDArray out) {
        inputArguments.add(in);
        outputArguments.add(out);
        iArguments.add(Long.valueOf(dataType));

        dtype = DataType.fromInt(dataType);
    }

    public BitCast(INDArray in, DataType dataType) {
        this(in, dataType.toInt());
    }

    public BitCast(INDArray in, int dataType) {
        inputArguments.add(in);
        iArguments.add(Long.valueOf(dataType));
        dtype = DataType.fromInt(dataType);
    }

    public BitCast(SameDiff sameDiff, SDVariable in, SDVariable dataType) {
        super("", sameDiff, new SDVariable[]{in, dataType});
    }

    @Override
    public void initFromTensorFlow(NodeDef nodeDef, SameDiff initWith, Map attributesForNode, GraphDef graph) {
        TFGraphMapper.initFunctionFromProperties(nodeDef.getOp(), this, attributesForNode, nodeDef, graph);
        val t = nodeDef.getAttrOrDefault("type", null);
        val type = ArrayOptionsHelper.convertToDataType(t.getType());
        addIArgument(type.toInt());

        dtype = type;
    }

    @Override
    public String opName() {
        return "bitcast";
    }

    @Override
    public String tensorflowName() {
        return "Bitcast";
    }

    @Override
    public List calculateOutputDataTypes(List inputDataTypes){
        int n = args().length;
        Preconditions.checkState(inputDataTypes != null && inputDataTypes.size() == n, "Expected %s input data types for %s, got %s", n, getClass(), inputDataTypes);
        return Collections.singletonList(dtype);
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy