org.nd4j.linalg.api.ops.custom.Roll Maven / Gradle / Ivy
/* ******************************************************************************
* Copyright (c) 2019 Konduit K.K.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.nd4j.linalg.api.ops.custom;
import lombok.NonNull;
import org.nd4j.autodiff.samediff.SDVariable;
import org.nd4j.autodiff.samediff.SameDiff;
import org.nd4j.common.base.Preconditions;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.DynamicCustomOp;
import java.util.Collections;
import java.util.List;
public class Roll extends DynamicCustomOp {
public Roll() {}
public Roll(@NonNull INDArray input, @NonNull INDArray axes, @NonNull INDArray shifts) {
Preconditions.checkArgument(axes.rank() == shifts.rank(), "Roll: shifts and axes should be the same rank");
Preconditions.checkArgument(axes.length() == shifts.length(), "Roll: shifts and axes should be the same length");
addInputArgument(input, axes, shifts);
}
public Roll(@NonNull INDArray input, int shift) {
addInputArgument(input);
addIArgument(shift);
}
public Roll(@NonNull SameDiff sameDiff, @NonNull SDVariable input, @NonNull SDVariable shift) {
super("", sameDiff, new SDVariable[]{input,shift});
}
public Roll(@NonNull SameDiff sameDiff, @NonNull SDVariable input, @NonNull SDVariable axes, @NonNull SDVariable shift) {
super("", sameDiff, new SDVariable[]{input,axes,shift});
}
public Roll(@NonNull SameDiff sameDiff, @NonNull SDVariable input, int shift) {
super("", sameDiff, new SDVariable[]{input});
addIArgument(shift);
}
@Override
public String opName() {
return "roll";
}
@Override
public String tensorflowName() {
return "Roll";
}
@Override
public List calculateOutputDataTypes(List inputDataTypes){
int n = args().length;
Preconditions.checkState(inputDataTypes != null && inputDataTypes.size() == n, "Expected %s input data types for %s, got %s", n, getClass(), inputDataTypes);
return Collections.singletonList(inputDataTypes.get(0));
}
}