Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.nd4j.linalg.convolution;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.impl.transforms.Pad.Mode;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.indexing.INDArrayIndex;
import org.nd4j.linalg.indexing.NDArrayIndex;
public class OldConvolution {
private OldConvolution() {}
/**
*
* @param col
* @param stride
* @param padding
* @param height
* @param width
* @return
*/
public static INDArray col2im(INDArray col, int[] stride, int[] padding, int height, int width) {
return col2im(col, stride[0], stride[1], padding[0], padding[1], height, width);
}
/**
* Rearrange matrix
* columns into blocks
* @param col the column
* transposed image to convert
* @param sy stride y
* @param sx stride x
* @param ph padding height
* @param pw padding width
* @param h height
* @param w width
* @return
*/
public static INDArray col2im(INDArray col, int sy, int sx, int ph, int pw, int h, int w) {
//number of images
long n = col.size(0);
//number of columns
long c = col.size(1);
//kernel height
long kh = col.size(2);
//kernel width
long kw = col.size(3);
//out height
long outH = col.size(4);
//out width
long outW = col.size(5);
INDArray img = Nd4j.create(n, c, h + 2 * ph + sy - 1, w + 2 * pw + sx - 1);
for (int i = 0; i < kh; i++) {
//iterate over the kernel rows
long iLim = i + sy * outH;
for (int j = 0; j < kw; j++) {
//iterate over the kernel columns
long jLim = j + sx * outW;
INDArrayIndex[] indices = new INDArrayIndex[] {NDArrayIndex.all(), NDArrayIndex.all(),
NDArrayIndex.interval(i, sy, iLim), NDArrayIndex.interval(j, sx, jLim)};
INDArray get = img.get(indices);
INDArray colAdd = col.get(NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.point(i),
NDArrayIndex.point(j), NDArrayIndex.all(), NDArrayIndex.all());
get.addi(colAdd);
img.put(indices, get);
}
}
//return the subset of the padded image relative to the height/width of the image and the padding width/height
return img.get(NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.interval(ph, ph + h),
NDArrayIndex.interval(pw, pw + w));
}
/**
*
* @param img
* @param kernel
* @param stride
* @param padding
* @return
*/
public static INDArray im2col(INDArray img, int[] kernel, int[] stride, int[] padding) {
return im2col(img, kernel[0], kernel[1], stride[0], stride[1], padding[0], padding[1], 0, false);
}
/**
* Implement column formatted images
* @param img the image to process
* @param kh the kernel height
* @param kw the kernel width
* @param sy the stride along y
* @param sx the stride along x
* @param ph the padding width
* @param pw the padding height
* @param pval the padding value
* @param coverAll whether to cover the whole image or not
* @return the column formatted image
*
*/
public static INDArray im2col(INDArray img, int kh, int kw, int sy, int sx, int ph, int pw, int pval,
boolean coverAll) {
//number of images
long n = img.size(0);
//number of channels (depth)
long c = img.size(1);
//image height
long h = img.size(2);
//image width
long w = img.size(3);
long outHeight = outSize(h, kh, sy, ph, coverAll);
long outWidth = outSize(w, kw, sx, pw, coverAll);
INDArray padded = Nd4j.pad(img, new int[][] {{0, 0}, {0, 0}, {ph, ph + sy - 1}, {pw, pw + sx - 1}}, Mode.CONSTANT, pval);
INDArray ret = Nd4j.create(n, c, kh, kw, outHeight, outWidth);
for (int i = 0; i < kh; i++) {
//offset for the row based on the stride and output height
long iLim = i + sy * outHeight;
for (int j = 0; j < kw; j++) {
//offset for the column based on stride and output width
long jLim = j + sx * outWidth;
INDArray get = padded.get(NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.interval(i, sy, iLim),
NDArrayIndex.interval(j, sx, jLim));
ret.put(new INDArrayIndex[] {NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.point(i),
NDArrayIndex.point(j), NDArrayIndex.all(), NDArrayIndex.all()}, get);
}
}
return ret;
}
/**
*
* The out size for a convolution
* @param size
* @param k
* @param s
* @param p
* @param coverAll
* @return
*/
public static int outSize(int size, int k, int s, int p, boolean coverAll) {
if (coverAll)
return (size + p * 2 - k + s - 1) / s + 1;
else
return (size + p * 2 - k) / s + 1;
}
public static long outSize(long size, long k, long s, long p, boolean coverAll) {
if (coverAll)
return (size + p * 2 - k + s - 1) / s + 1;
else
return (size + p * 2 - k) / s + 1;
}
}