All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.nd4j.linalg.eigen.Eigen Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/*******************************************************************************
 * Copyright (c) 2015-2018 Skymind, Inc.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Apache License, Version 2.0 which is available at
 * https://www.apache.org/licenses/LICENSE-2.0.
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 *
 * SPDX-License-Identifier: Apache-2.0
 ******************************************************************************/

package org.nd4j.linalg.eigen;

import org.nd4j.common.base.Preconditions;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.inverse.InvertMatrix;

/**
 * Compute eigen values
 *
 * @author Adam Gibson
 */
public class Eigen {

    public static INDArray dummy = Nd4j.scalar(1);

    /**
     * Compute generalized eigenvalues of the problem A x = L x.
     * Matrix A is modified in the process, holding eigenvectors after execution.
     *
     * @param A symmetric Matrix A. After execution, A will contain the eigenvectors as columns
     * @return a vector of eigenvalues L.
     */
    public static INDArray symmetricGeneralizedEigenvalues(INDArray A) {
        INDArray eigenvalues = Nd4j.create(A.dataType(), A.rows());
        Nd4j.getBlasWrapper().syev('V', 'L', A, eigenvalues);
        return eigenvalues;
    }


    /**
     * Compute generalized eigenvalues of the problem A x = L x.
     * Matrix A is modified in the process, holding eigenvectors as columns after execution.
     *
     * @param A symmetric Matrix A. After execution, A will contain the eigenvectors as columns
     * @param calculateVectors if false, it will not modify A and calculate eigenvectors
     * @return a vector of eigenvalues L.
     */
    public static INDArray symmetricGeneralizedEigenvalues(INDArray A, boolean calculateVectors) {
        INDArray eigenvalues = Nd4j.create(A.dataType(), A.rows());
        Nd4j.getBlasWrapper().syev('V', 'L', (calculateVectors ? A : A.dup()), eigenvalues);
        return eigenvalues;
    }


    /**
     * Compute generalized eigenvalues of the problem A x = L B x.
     * The data will be unchanged, no eigenvectors returned.
     *
     * @param A symmetric Matrix A.
     * @param B symmetric Matrix B.
     * @return a vector of eigenvalues L.
     */
    public static INDArray symmetricGeneralizedEigenvalues(INDArray A, INDArray B) {
        Preconditions.checkArgument(A.isMatrix() && A.isSquare(), "Argument A must be a square matrix: has shape %s", A.shape());
        Preconditions.checkArgument(B.isMatrix() && B.isSquare(), "Argument B must be a square matrix: has shape %s", B.shape());
        INDArray W = Nd4j.create(A.rows());

        A = InvertMatrix.invert(B, false).mmuli(A);
        Nd4j.getBlasWrapper().syev('V', 'L', A, W);
        return W;
    }

    /**
     * Compute generalized eigenvalues of the problem A x = L B x.
     * The data will be unchanged, no eigenvectors returned unless calculateVectors is true.
     * If calculateVectors == true, A will contain a matrix with the eigenvectors as columns.
     *
     * @param A symmetric Matrix A.
     * @param B symmetric Matrix B.
     * @return a vector of eigenvalues L.
     */
    public static INDArray symmetricGeneralizedEigenvalues(INDArray A, INDArray B, boolean calculateVectors) {
        Preconditions.checkArgument(A.isMatrix() && A.isSquare(), "Argument A must be a square matrix: has shape %s", A.shape());
        Preconditions.checkArgument(B.isMatrix() && B.isSquare(), "Argument B must be a square matrix: has shape %s", B.shape());
        INDArray W = Nd4j.create(A.dataType(), A.rows());
        if (calculateVectors)
            A.assign(InvertMatrix.invert(B, false).mmuli(A));
        else
            A = InvertMatrix.invert(B, false).mmuli(A);

        Nd4j.getBlasWrapper().syev('V', 'L', A, W);
        return W;
    }


}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy