All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.nd4j.linalg.factory.ops.NDMath Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/*******************************************************************************
 * Copyright (c) 2019-2020 Konduit K.K.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Apache License, Version 2.0 which is available at
 * https://www.apache.org/licenses/LICENSE-2.0.
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 *
 * SPDX-License-Identifier: Apache-2.0
 ******************************************************************************/

//================== GENERATED CODE - DO NOT MODIFY THIS FILE ==================

package org.nd4j.linalg.factory.ops;

import static org.nd4j.linalg.factory.NDValidation.isSameType;

import org.nd4j.common.base.Preconditions;
import org.nd4j.enums.PartitionMode;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.NDValidation;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.indexing.conditions.Condition;

public class NDMath {
  public NDMath() {
  }

  /**
   * Clips tensor values to a maximum average L2-norm.
* * @param x Input variable (NUMERIC type) * @param clipValue Value for clipping * @param dimensions Dimensions to reduce over (Size: AtLeast(min=0)) * @return output Output variable (NUMERIC type) */ public INDArray clipByAvgNorm(INDArray x, double clipValue, int... dimensions) { NDValidation.validateNumerical("ClipByAvgNorm", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.clip.ClipByAvgNorm(x, clipValue, dimensions))[0]; } /** * Looks up ids in a list of embedding tensors.
* * @param x Input tensor (NUMERIC type) * @param indices A Tensor containing the ids to be looked up. (INT type) * @param PartitionMode partition_mode == 0 - i.e. 'mod' , 1 - 'div' * @return output Shifted output (NUMERIC type) */ public INDArray embeddingLookup(INDArray x, INDArray indices, PartitionMode PartitionMode) { NDValidation.validateNumerical("EmbeddingLookup", "x", x); NDValidation.validateInteger("EmbeddingLookup", "indices", indices); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.tensorops.EmbeddingLookup(x, indices, PartitionMode))[0]; } /** * Return array of max elements indices with along tensor dimensions
* * @param x Input tensor (NUMERIC type) * @param dataType Data type * @return output Array max elements indices with along dimensions. (INT type) */ public INDArray mergeMaxIndex(INDArray[] x, DataType dataType) { NDValidation.validateNumerical("MergeMaxIndex", "x", x); Preconditions.checkArgument(x.length >= 1, "x has incorrect size/length. Expected: x.length >= 1, got %s", x.length); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.MergeMaxIndex(x, dataType))[0]; } /** * Return array of max elements indices with along tensor dimensions
* * @param x Input tensor (NUMERIC type) * @return output Array max elements indices with along dimensions. (INT type) */ public INDArray mergeMaxIndex(INDArray... x) { NDValidation.validateNumerical("MergeMaxIndex", "x", x); Preconditions.checkArgument(x.length >= 1, "x has incorrect size/length. Expected: x.length >= 1, got %s", x.length); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.MergeMaxIndex(x, DataType.INT))[0]; } /** * Elementwise absolute value operation: out = abs(x)
* * @param x Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray abs(INDArray x) { NDValidation.validateNumerical("abs", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.same.Abs(x)); } /** * Elementwise acos (arccosine, inverse cosine) operation: out = arccos(x)
* * @param x Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray acos(INDArray x) { NDValidation.validateNumerical("acos", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.strict.ACos(x)); } /** * Elementwise acosh (inverse hyperbolic cosine) function: out = acosh(x)
* * @param x Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray acosh(INDArray x) { NDValidation.validateNumerical("acosh", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.strict.ACosh(x)); } /** * Pairwise addition operation, out = x + y
* * Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
* * @param x Input variable (NUMERIC type) * @param y Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray add(INDArray x, INDArray y) { NDValidation.validateNumerical("add", "x", x); NDValidation.validateNumerical("add", "y", y); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.pairwise.arithmetic.AddOp(x, y))[0]; } /** * Scalar add operation, out = in + scalar
* * @param x Input variable (NUMERIC type) * @param value Scalar value for op * @return output Output variable (NUMERIC type) */ public INDArray add(INDArray x, double value) { NDValidation.validateNumerical("add", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.scalar.ScalarAdd(x, value)); } /** * Absolute max array reduction operation, optionally along specified dimensions: out = max(abs(x))
* * @param in Input variable (NUMERIC type) * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output Reduced array of rank (input rank - num dimensions) (NUMERIC type) */ public INDArray amax(INDArray in, int... dimensions) { NDValidation.validateNumerical("amax", "in", in); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.same.AMax(in, dimensions)); } /** * Absolute mean array reduction operation, optionally along specified dimensions: out = mean(abs(x))
* * @param in Input variable (NUMERIC type) * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output Reduced array of rank (input rank - num dimensions) (NUMERIC type) */ public INDArray amean(INDArray in, int... dimensions) { NDValidation.validateNumerical("amean", "in", in); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.floating.AMean(in, dimensions)); } /** * Absolute min array reduction operation, optionally along specified dimensions: out = min(abs(x))
* * @param in Input variable (NUMERIC type) * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output Reduced array of rank (input rank - num dimensions) (NUMERIC type) */ public INDArray amin(INDArray in, int... dimensions) { NDValidation.validateNumerical("amin", "in", in); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.same.AMin(in, dimensions)); } /** * Boolean AND operation: elementwise (x != 0) && (y != 0)
* If x and y arrays have equal shape, the output shape is the same as these inputs.
* Note: supports broadcasting if x and y have different shapes and are broadcastable.
* Returns an array with values 1 where condition is satisfied, or value 0 otherwise.
* * @param x Input 1 (BOOL type) * @param y Input 2 (BOOL type) * @return output INDArray with values 0 and 1 based on where the condition is satisfied (BOOL type) */ public INDArray and(INDArray x, INDArray y) { NDValidation.validateBool("and", "x", x); NDValidation.validateBool("and", "y", y); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.pairwise.bool.And(x, y)); } /** * Elementwise asin (arcsin, inverse sine) operation: out = arcsin(x)
* * @param x Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray asin(INDArray x) { NDValidation.validateNumerical("asin", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.strict.ASin(x)); } /** * Elementwise asinh (inverse hyperbolic sine) function: out = asinh(x)
* * @param x Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray asinh(INDArray x) { NDValidation.validateNumerical("asinh", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.strict.ASinh(x)); } /** * Absolute sum array reduction operation, optionally along specified dimensions: out = sum(abs(x))
* * @param in Input variable (NUMERIC type) * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output Reduced array of rank (input rank - num dimensions) (NUMERIC type) */ public INDArray asum(INDArray in, int... dimensions) { NDValidation.validateNumerical("asum", "in", in); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.same.ASum(in, dimensions)); } /** * Elementwise atan (arctangent, inverse tangent) operation: out = arctangent(x)
* * @param x Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray atan(INDArray x) { NDValidation.validateNumerical("atan", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.strict.ATan(x)); } /** * Elementwise atan (arctangent, inverse tangent) operation: out = atan2(x,y).
* Similar to atan(y/x) but sigts of x and y are used to determine the location of the result
* * @param y Input Y variable (NUMERIC type) * @param x Input X variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray atan2(INDArray y, INDArray x) { NDValidation.validateNumerical("atan2", "y", y); NDValidation.validateNumerical("atan2", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.ATan2(y, x))[0]; } /** * Elementwise atanh (inverse hyperbolic tangent) function: out = atanh(x)
* * @param x Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray atanh(INDArray x) { NDValidation.validateNumerical("atanh", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.strict.ATanh(x)); } /** * Bit shift operation
* * @param x input (NUMERIC type) * @param shift shift value (NUMERIC type) * @return output shifted output (NUMERIC type) */ public INDArray bitShift(INDArray x, INDArray shift) { NDValidation.validateNumerical("bitShift", "x", x); NDValidation.validateNumerical("bitShift", "shift", shift); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.ShiftBits(x, shift))[0]; } /** * Right bit shift operation
* * @param x Input tensor (NUMERIC type) * @param shift shift argument (NUMERIC type) * @return output shifted output (NUMERIC type) */ public INDArray bitShiftRight(INDArray x, INDArray shift) { NDValidation.validateNumerical("bitShiftRight", "x", x); NDValidation.validateNumerical("bitShiftRight", "shift", shift); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.RShiftBits(x, shift))[0]; } /** * Cyclic bit shift operation
* * @param x Input tensor (NUMERIC type) * @param shift shift argy=ument (NUMERIC type) * @return output shifted output (NUMERIC type) */ public INDArray bitShiftRotl(INDArray x, INDArray shift) { NDValidation.validateNumerical("bitShiftRotl", "x", x); NDValidation.validateNumerical("bitShiftRotl", "shift", shift); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.CyclicShiftBits(x, shift))[0]; } /** * Cyclic right shift operation
* * @param x Input tensor (NUMERIC type) * @param shift Shift argument (NUMERIC type) * @return output Shifted output (NUMERIC type) */ public INDArray bitShiftRotr(INDArray x, INDArray shift) { NDValidation.validateNumerical("bitShiftRotr", "x", x); NDValidation.validateNumerical("bitShiftRotr", "shift", shift); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.CyclicRShiftBits(x, shift))[0]; } /** * Element-wise ceiling function: out = ceil(x).
* Rounds each value up to the nearest integer value (if not already an integer)
* * @param x Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray ceil(INDArray x) { NDValidation.validateNumerical("ceil", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.same.Ceil(x)); } /** * Clipping by L2 norm, optionally along dimension(s)
* if l2Norm(x,dimension) < clipValue, then input is returned unmodifed
* Otherwise, out[i] = in[i] * clipValue / l2Norm(in, dimensions) where each value is clipped according
* to the corresponding l2Norm along the specified dimensions
* * @param x Input variable (NUMERIC type) * @param clipValue Clipping value (maximum l2 norm) * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output Output variable (NUMERIC type) */ public INDArray clipByNorm(INDArray x, double clipValue, int... dimensions) { NDValidation.validateNumerical("clipByNorm", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.clip.ClipByNorm(x, clipValue, dimensions))[0]; } /** * Element-wise clipping function:
* out[i] = in[i] if in[i] >= clipValueMin and in[i] <= clipValueMax
* out[i] = clipValueMin if in[i] < clipValueMin
* out[i] = clipValueMax if in[i] > clipValueMax
* * @param x Input variable (NUMERIC type) * @param clipValueMin Minimum value for clipping * @param clipValueMax Maximum value for clipping * @return output Output variable (NUMERIC type) */ public INDArray clipByValue(INDArray x, double clipValueMin, double clipValueMax) { NDValidation.validateNumerical("clipByValue", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.clip.ClipByValue(x, clipValueMin, clipValueMax))[0]; } /** * Compute the 2d confusion matrix of size [numClasses, numClasses] from a pair of labels and predictions, both of
* which are represented as integer values. This version assumes the number of classes is 1 + max(max(labels), max(pred))
* For example, if labels = [0, 1, 1] and predicted = [0, 2, 1] then output is:
* [1, 0, 0]
* [0, 1, 1]
* [0, 0, 0]
* * @param labels Labels - 1D array of integer values representing label values (NUMERIC type) * @param pred Predictions - 1D array of integer values representing predictions. Same length as labels (NUMERIC type) * @param dataType Data type * @return output variable (2D, shape [numClasses, numClasses}) (NUMERIC type) */ public INDArray confusionMatrix(INDArray labels, INDArray pred, DataType dataType) { NDValidation.validateNumerical("confusionMatrix", "labels", labels); NDValidation.validateNumerical("confusionMatrix", "pred", pred); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.ConfusionMatrix(labels, pred, dataType))[0]; } /** * Compute the 2d confusion matrix of size [numClasses, numClasses] from a pair of labels and predictions, both of
* which are represented as integer values.
* For example, if labels = [0, 1, 1], predicted = [0, 2, 1], and numClasses=4 then output is:
* [1, 0, 0, 0]
* [0, 1, 1, 0]
* [0, 0, 0, 0]
* [0, 0, 0, 0]
* * @param labels Labels - 1D array of integer values representing label values (NUMERIC type) * @param pred Predictions - 1D array of integer values representing predictions. Same length as labels (NUMERIC type) * @param numClasses Number of classes * @return output variable (2D, shape [numClasses, numClasses}) (NUMERIC type) */ public INDArray confusionMatrix(INDArray labels, INDArray pred, int numClasses) { NDValidation.validateNumerical("confusionMatrix", "labels", labels); NDValidation.validateNumerical("confusionMatrix", "pred", pred); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.ConfusionMatrix(labels, pred, numClasses))[0]; } /** * Compute the 2d confusion matrix of size [numClasses, numClasses] from a pair of labels and predictions, both of
* which are represented as integer values. This version assumes the number of classes is 1 + max(max(labels), max(pred))
* For example, if labels = [0, 1, 1], predicted = [0, 2, 1] and weights = [1, 2, 3]
* [1, 0, 0]
* [0, 3, 2]
* [0, 0, 0]
* * @param labels Labels - 1D array of integer values representing label values (NUMERIC type) * @param pred Predictions - 1D array of integer values representing predictions. Same length as labels (NUMERIC type) * @param weights Weights - 1D array of values (may be real/decimal) representing the weight/contribution of each prediction. Must be same length as both labels and predictions arrays (NUMERIC type) * @return output variable (2D, shape [numClasses, numClasses}) (NUMERIC type) */ public INDArray confusionMatrix(INDArray labels, INDArray pred, INDArray weights) { NDValidation.validateNumerical("confusionMatrix", "labels", labels); NDValidation.validateNumerical("confusionMatrix", "pred", pred); NDValidation.validateNumerical("confusionMatrix", "weights", weights); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.ConfusionMatrix(labels, pred, weights))[0]; } /** * Compute the 2d confusion matrix of size [numClasses, numClasses] from a pair of labels and predictions, both of
* which are represented as integer values.
* For example, if labels = [0, 1, 1], predicted = [0, 2, 1], numClasses = 4, and weights = [1, 2, 3]
* [1, 0, 0, 0]
* [0, 3, 2, 0]
* [0, 0, 0, 0]
* [0, 0, 0, 0]
* * @param labels Labels - 1D array of integer values representing label values (NUMERIC type) * @param pred Predictions - 1D array of integer values representing predictions. Same length as labels (NUMERIC type) * @param weights Weights - 1D array of values (may be real/decimal) representing the weight/contribution of each prediction. Must be same length as both labels and predictions arrays (NUMERIC type) * @param numClasses * @return output Output variable (2D, shape [numClasses, numClasses}) (NUMERIC type) */ public INDArray confusionMatrix(INDArray labels, INDArray pred, INDArray weights, int numClasses) { NDValidation.validateNumerical("confusionMatrix", "labels", labels); NDValidation.validateNumerical("confusionMatrix", "pred", pred); NDValidation.validateNumerical("confusionMatrix", "weights", weights); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.ConfusionMatrix(labels, pred, weights, numClasses))[0]; } /** * Elementwise cosine operation: out = cos(x)
* * @param x Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray cos(INDArray x) { NDValidation.validateNumerical("cos", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.strict.Cos(x)); } /** * Elementwise cosh (hyperbolic cosine) operation: out = cosh(x)
* * @param x Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray cosh(INDArray x) { NDValidation.validateNumerical("cosh", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.strict.Cosh(x)); } /** * Cosine distance reduction operation. The output contains the cosine distance for each
* tensor/subset along the specified dimensions:
* out = 1.0 - cosineSimilarity(x,y)
* * @param x Input variable x (NUMERIC type) * @param y Input variable y (NUMERIC type) * @param dimensions Dimensions to calculate cosineDistance over (Size: AtLeast(min=0)) * @return output Output variable (NUMERIC type) */ public INDArray cosineDistance(INDArray x, INDArray y, int... dimensions) { NDValidation.validateNumerical("cosineDistance", "x", x); NDValidation.validateNumerical("cosineDistance", "y", y); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce3.CosineDistance(x, y, dimensions)); } /** * Cosine similarity pairwise reduction operation. The output contains the cosine similarity for each tensor/subset
* along the specified dimensions:
* out = (sum_i x[i] * y[i]) / ( sqrt(sum_i x[i]^2) * sqrt(sum_i y[i]^2)
* * @param x Input variable x (NUMERIC type) * @param y Input variable y (NUMERIC type) * @param dimensions Dimensions to calculate cosineSimilarity over (Size: AtLeast(min=0)) * @return output Output variable (NUMERIC type) */ public INDArray cosineSimilarity(INDArray x, INDArray y, int... dimensions) { NDValidation.validateNumerical("cosineSimilarity", "x", x); NDValidation.validateNumerical("cosineSimilarity", "y", y); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce3.CosineSimilarity(x, y, dimensions)); } /** * Count non zero array reduction operation, optionally along specified dimensions: out = count(x != 0)
* * @param in Input variable (NUMERIC type) * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output Reduced array of rank (input rank - num dimensions) (NUMERIC type) */ public INDArray countNonZero(INDArray in, int... dimensions) { NDValidation.validateNumerical("countNonZero", "in", in); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.longer.CountNonZero(in, dimensions)); } /** * Count zero array reduction operation, optionally along specified dimensions: out = count(x == 0)
* * @param in Input variable (NUMERIC type) * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output Reduced array of rank (input rank - num dimensions) (NUMERIC type) */ public INDArray countZero(INDArray in, int... dimensions) { NDValidation.validateNumerical("countZero", "in", in); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.longer.CountZero(in, dimensions)); } /** * Returns the pair-wise cross product of equal size arrays a and b: a x b = ||a||x||b|| sin(theta).
* Can take rank 1 or above inputs (of equal shapes), but note that the last dimension must have dimension 3
* * @param a First input (NUMERIC type) * @param b Second input (NUMERIC type) * @return output Element-wise cross product (NUMERIC type) */ public INDArray cross(INDArray a, INDArray b) { NDValidation.validateNumerical("cross", "a", a); NDValidation.validateNumerical("cross", "b", b); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.Cross(a, b))[0]; } /** * Element-wise cube function: out = x^3
* * @param x Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray cube(INDArray x) { NDValidation.validateNumerical("cube", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.same.Cube(x)); } /** * Returns an output variable with diagonal values equal to the specified values; off-diagonal values will be set to 0
* For example, if input = [1,2,3], then output is given by:
* [ 1, 0, 0]
* [ 0, 2, 0]
* [ 0, 0, 3]
*
* Higher input ranks are also supported: if input has shape [a,...,R-1] then output[i,...,k,i,...,k] = input[i,...,k].
* i.e., for input rank R, output has rank 2R
* * @param x Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray diag(INDArray x) { NDValidation.validateNumerical("diag", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.Diag(x))[0]; } /** * Extract the diagonal part from the input array.
* If input is
* [ 1, 0, 0]
* [ 0, 2, 0]
* [ 0, 0, 3]
* then output is [1, 2, 3].
* Supports higher dimensions: in general, out[i,...,k] = in[i,...,k,i,...,k]
* * @param x Input variable (NUMERIC type) * @return output Diagonal part of the input (NUMERIC type) */ public INDArray diagPart(INDArray x) { NDValidation.validateNumerical("diagPart", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.DiagPart(x))[0]; } /** * Pairwise division operation, out = x / y
* * Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
* * @param x Input variable (NUMERIC type) * @param y Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray div(INDArray x, INDArray y) { NDValidation.validateNumerical("div", "x", x); NDValidation.validateNumerical("div", "y", y); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.pairwise.arithmetic.DivOp(x, y))[0]; } /** * Scalar division operation, out = in / scalar
* * @param x Input variable (NUMERIC type) * @param value Scalar value for op * @return output Output variable (NUMERIC type) */ public INDArray div(INDArray x, double value) { NDValidation.validateNumerical("div", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.scalar.ScalarDivision(x, value)); } /** * Entropy reduction: -sum(x * log(x))
* * @param in Input variable (NUMERIC type) * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output Reduced array of rank (input rank - num dimensions) (NUMERIC type) */ public INDArray entropy(INDArray in, int... dimensions) { NDValidation.validateNumerical("entropy", "in", in); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.floating.Entropy(in, dimensions)); } /** * Element-wise Gaussian error function - out = erf(in)
* * @param x Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray erf(INDArray x) { NDValidation.validateNumerical("erf", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.strict.Erf(x)); } /** * Element-wise complementary Gaussian error function - out = erfc(in) = 1 - erf(in)
* * @param x Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray erfc(INDArray x) { NDValidation.validateNumerical("erfc", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.strict.Erfc(x)); } /** * Euclidean distance (l2 norm, l2 distance) reduction operation. The output contains the Euclidean distance for each
* tensor/subset along the specified dimensions:
* out = sqrt( sum_i (x[i] - y[i])^2 )
* * @param x Input variable x (NUMERIC type) * @param y Input variable y (NUMERIC type) * @param dimensions Dimensions to calculate euclideanDistance over (Size: AtLeast(min=0)) * @return output Output variable (NUMERIC type) */ public INDArray euclideanDistance(INDArray x, INDArray y, int... dimensions) { NDValidation.validateNumerical("euclideanDistance", "x", x); NDValidation.validateNumerical("euclideanDistance", "y", y); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce3.EuclideanDistance(x, y, dimensions)); } /** * Elementwise exponent function: out = exp(x) = 2.71828...^x
* * @param x Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray exp(INDArray x) { NDValidation.validateNumerical("exp", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.strict.Exp(x)); } /** * Elementwise 1.0 - exponent function: out = 1.0 - exp(x) = 1.0 - 2.71828...^x
* * @param x Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray expm1(INDArray x) { NDValidation.validateNumerical("expm1", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.strict.Expm1(x)); } /** * Generate an identity matrix with the specified number of rows and columns.
* * @param rows Number of rows * @return output Identity matrix (NUMERIC type) */ public INDArray eye(int rows) { return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.Eye(rows))[0]; } /** * As per eye(String, int, int, DataType) but with the default datatype, Eye.DEFAULT_DTYPE
* * @param rows Number of rows * @param cols Number of columns * @return output (NUMERIC type) */ public INDArray eye(int rows, int cols) { return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.Eye(rows, cols))[0]; } /** * Generate an identity matrix with the specified number of rows and columns
* Example:
*

* {@code INDArray eye = eye(3,2)
* eye:
* [ 1, 0]
* [ 0, 1]
* [ 0, 0]}
*

* * @param rows Number of rows * @param cols Number of columns * @param dataType Data type * @param dimensions (Size: AtLeast(min=0)) * @return output Identity matrix (NUMERIC type) */ public INDArray eye(int rows, int cols, DataType dataType, int... dimensions) { Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.Eye(rows, cols, dataType, dimensions))[0]; } /** * As per eye(int, int) bit with the number of rows/columns specified as scalar INDArrays
* * @param rows Number of rows (INT type) * @param cols Number of columns (INT type) * @return output Identity matrix (NUMERIC type) */ public INDArray eye(INDArray rows, INDArray cols) { NDValidation.validateInteger("eye", "rows", rows); NDValidation.validateInteger("eye", "cols", cols); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.Eye(rows, cols))[0]; } /** * As per eye(String, int) but with the number of rows specified as a scalar INDArray
* * @param rows Number of rows (INT type) * @return output SDVaribable identity matrix (NUMERIC type) */ public INDArray eye(INDArray rows) { NDValidation.validateInteger("eye", "rows", rows); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.Eye(rows))[0]; } /** * First index reduction operation.
* Returns a variable that contains the index of the first element that matches the specified condition (for each
* slice along the specified dimensions)
* Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param in Input variable (NUMERIC type) * @param condition Condition to check on input variable * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=1)) * @return output Reduced array of rank (input rank - num dimensions) (NUMERIC type) */ public INDArray firstIndex(INDArray in, Condition condition, int... dimensions) { NDValidation.validateNumerical("firstIndex", "in", in); Preconditions.checkArgument(dimensions.length >= 1, "dimensions has incorrect size/length. Expected: dimensions.length >= 1, got %s", dimensions.length); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.indexaccum.FirstIndex(in, false, condition, dimensions)); } /** * First index reduction operation.
* Returns a variable that contains the index of the first element that matches the specified condition (for each
* slice along the specified dimensions)
* Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param in Input variable (NUMERIC type) * @param condition Condition to check on input variable * @param keepDims If true: keep the dimensions that are reduced on (as length 1). False: remove the reduction dimensions * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=1)) * @return output Reduced array of rank (input rank - num dimensions) (NUMERIC type) */ public INDArray firstIndex(INDArray in, Condition condition, boolean keepDims, int... dimensions) { NDValidation.validateNumerical("firstIndex", "in", in); Preconditions.checkArgument(dimensions.length >= 1, "dimensions has incorrect size/length. Expected: dimensions.length >= 1, got %s", dimensions.length); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.indexaccum.FirstIndex(in, keepDims, condition, dimensions)); } /** * Element-wise floor function: out = floor(x).
* Rounds each value down to the nearest integer value (if not already an integer)
* * @param x Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray floor(INDArray x) { NDValidation.validateNumerical("floor", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.same.Floor(x)); } /** * Pairwise floor division operation, out = floor(x / y)
* * Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
* * @param x Input variable (NUMERIC type) * @param y Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray floorDiv(INDArray x, INDArray y) { NDValidation.validateNumerical("floorDiv", "x", x); NDValidation.validateNumerical("floorDiv", "y", y); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.pairwise.arithmetic.FloorDivOp(x, y))[0]; } /** * Pairwise Modulus division operation
* * Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
* * @param x Input variable (NUMERIC type) * @param y Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray floorMod(INDArray x, INDArray y) { NDValidation.validateNumerical("floorMod", "x", x); NDValidation.validateNumerical("floorMod", "y", y); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.pairwise.arithmetic.FloorModOp(x, y))[0]; } /** * Scalar floor modulus operation
* * @param x Input variable (NUMERIC type) * @param value Scalar value for op * @return output Output variable (NUMERIC type) */ public INDArray floorMod(INDArray x, double value) { NDValidation.validateNumerical("floorMod", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.scalar.ScalarFMod(x, value)); } /** * Hamming distance reduction operation. The output contains the cosine distance for each
* tensor/subset along the specified dimensions:
* out = count( x[i] != y[i] )
* * @param x Input variable x (NUMERIC type) * @param y Input variable y (NUMERIC type) * @param dimensions Dimensions to calculate hammingDistance over (Size: AtLeast(min=0)) * @return output Output variable (NUMERIC type) */ public INDArray hammingDistance(INDArray x, INDArray y, int... dimensions) { NDValidation.validateNumerical("hammingDistance", "x", x); NDValidation.validateNumerical("hammingDistance", "y", y); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce3.HammingDistance(x, y, dimensions)); } /** * Index of the max absolute value: argmax(abs(in))
* see argmax(String, INDArray, boolean, int...)
* * @param in Input variable (NUMERIC type) * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=1)) * @return output Reduced array of rank (input rank - num dimensions) (NUMERIC type) */ public INDArray iamax(INDArray in, int... dimensions) { NDValidation.validateNumerical("iamax", "in", in); Preconditions.checkArgument(dimensions.length >= 1, "dimensions has incorrect size/length. Expected: dimensions.length >= 1, got %s", dimensions.length); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.indexaccum.IAMax(in, false, dimensions)); } /** * Index of the max absolute value: argmax(abs(in))
* see argmax(String, INDArray, boolean, int...)
* * @param in Input variable (NUMERIC type) * @param keepDims If true: keep the dimensions that are reduced on (as length 1). False: remove the reduction dimensions * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=1)) * @return output Reduced array of rank (input rank - num dimensions) (NUMERIC type) */ public INDArray iamax(INDArray in, boolean keepDims, int... dimensions) { NDValidation.validateNumerical("iamax", "in", in); Preconditions.checkArgument(dimensions.length >= 1, "dimensions has incorrect size/length. Expected: dimensions.length >= 1, got %s", dimensions.length); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.indexaccum.IAMax(in, keepDims, dimensions)); } /** * Index of the min absolute value: argmin(abs(in))
* see argmin(String, INDArray, boolean, int...)
* * @param in Input variable (NUMERIC type) * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=1)) * @return output Reduced array of rank (input rank - num dimensions) (NUMERIC type) */ public INDArray iamin(INDArray in, int... dimensions) { NDValidation.validateNumerical("iamin", "in", in); Preconditions.checkArgument(dimensions.length >= 1, "dimensions has incorrect size/length. Expected: dimensions.length >= 1, got %s", dimensions.length); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.indexaccum.IAMin(in, false, dimensions)); } /** * Index of the min absolute value: argmin(abs(in))
* see argmin(String, INDArray, boolean, int...)
* * @param in Input variable (NUMERIC type) * @param keepDims If true: keep the dimensions that are reduced on (as length 1). False: remove the reduction dimensions * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=1)) * @return output Reduced array of rank (input rank - num dimensions) (NUMERIC type) */ public INDArray iamin(INDArray in, boolean keepDims, int... dimensions) { NDValidation.validateNumerical("iamin", "in", in); Preconditions.checkArgument(dimensions.length >= 1, "dimensions has incorrect size/length. Expected: dimensions.length >= 1, got %s", dimensions.length); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.indexaccum.IAMin(in, keepDims, dimensions)); } /** * Is finite operation: elementwise isFinite(x)
* Returns an array with the same shape/size as the input, with values 1 where condition is satisfied, or
* value 0 otherwise
* * @param x Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray isFinite(INDArray x) { NDValidation.validateNumerical("isFinite", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.bool.IsFinite(x)); } /** * Is infinite operation: elementwise isInfinite(x)
* Returns an array with the same shape/size as the input, with values 1 where condition is satisfied, or
* value 0 otherwise
* * @param x Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray isInfinite(INDArray x) { NDValidation.validateNumerical("isInfinite", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.bool.IsInf(x)); } /** * Is maximum operation: elementwise x == max(x)
* Returns an array with the same shape/size as the input, with values 1 where condition is satisfied, or
* value 0 otherwise
* * @param x Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray isMax(INDArray x) { NDValidation.validateNumerical("isMax", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.any.IsMax(x))[0]; } /** * Is Not a Number operation: elementwise isNaN(x)
* Returns an array with the same shape/size as the input, with values 1 where condition is satisfied, or
* value 0 otherwise
* * @param x Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray isNaN(INDArray x) { NDValidation.validateNumerical("isNaN", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.bool.IsNaN(x)); } /** * Is the array non decreasing?
* An array is non-decreasing if for every valid i, x[i] <= x[i+1]. For Rank 2+ arrays, values are compared
* in 'c' (row major) order
* * @param x Input variable (NUMERIC type) * @return output Scalar variable with value 1 if non-decreasing, or 0 otherwise (NUMERIC type) */ public INDArray isNonDecreasing(INDArray x) { NDValidation.validateNumerical("isNonDecreasing", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.IsNonDecreasing(x))[0]; } /** * Is the array strictly increasing?
* An array is strictly increasing if for every valid i, x[i] < x[i+1]. For Rank 2+ arrays, values are compared
* in 'c' (row major) order
* * @param x Input variable (NUMERIC type) * @return output Scalar variable with value 1 if strictly increasing, or 0 otherwise (NUMERIC type) */ public INDArray isStrictlyIncreasing(INDArray x) { NDValidation.validateNumerical("isStrictlyIncreasing", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.IsStrictlyIncreasing(x))[0]; } /** * Jaccard similarity reduction operation. The output contains the Jaccard distance for each
* tensor along the specified dimensions.
* * @param x Input variable x (NUMERIC type) * @param y Input variable y (NUMERIC type) * @param dimensions Dimensions to calculate jaccardDistance over (Size: AtLeast(min=0)) * @return output Output variable (NUMERIC type) */ public INDArray jaccardDistance(INDArray x, INDArray y, int... dimensions) { NDValidation.validateNumerical("jaccardDistance", "x", x); NDValidation.validateNumerical("jaccardDistance", "y", y); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce3.JaccardDistance(x, y, dimensions)); } /** * Last index reduction operation.
* Returns a variable that contains the index of the last element that matches the specified condition (for each
* slice along the specified dimensions)
* Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param in Input variable (NUMERIC type) * @param condition Condition to check on input variable * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=1)) * @return output Reduced array of rank (input rank - num dimensions) (NUMERIC type) */ public INDArray lastIndex(INDArray in, Condition condition, int... dimensions) { NDValidation.validateNumerical("lastIndex", "in", in); Preconditions.checkArgument(dimensions.length >= 1, "dimensions has incorrect size/length. Expected: dimensions.length >= 1, got %s", dimensions.length); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.indexaccum.LastIndex(in, false, condition, dimensions)); } /** * Last index reduction operation.
* Returns a variable that contains the index of the last element that matches the specified condition (for each
* slice along the specified dimensions)
* Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param in Input variable (NUMERIC type) * @param condition Condition to check on input variable * @param keepDims If true: keep the dimensions that are reduced on (as length 1). False: remove the reduction dimensions * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=1)) * @return output Reduced array of rank (input rank - num dimensions) (NUMERIC type) */ public INDArray lastIndex(INDArray in, Condition condition, boolean keepDims, int... dimensions) { NDValidation.validateNumerical("lastIndex", "in", in); Preconditions.checkArgument(dimensions.length >= 1, "dimensions has incorrect size/length. Expected: dimensions.length >= 1, got %s", dimensions.length); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.indexaccum.LastIndex(in, keepDims, condition, dimensions)); } /** * Calculates difference between inputs X and Y.
* * @param x Input variable X (NUMERIC type) * @param y Input variable Y (NUMERIC type) */ public INDArray[] listDiff(INDArray x, INDArray y) { NDValidation.validateNumerical("listDiff", "x", x); NDValidation.validateNumerical("listDiff", "y", y); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.ListDiff(x, y)); } /** * Element-wise logarithm function (base e - natural logarithm): out = log(x)
* * @param x Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray log(INDArray x) { NDValidation.validateNumerical("log", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.strict.Log(x)); } /** * Element-wise logarithm function (with specified base): out = log_{base}(x)
* * @param x Input variable (NUMERIC type) * @param base Logarithm base * @return output Output variable (NUMERIC type) */ public INDArray log(INDArray x, double base) { NDValidation.validateNumerical("log", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.scalar.LogX(x, base)); } /** * Elementwise natural logarithm function: out = log_e (1 + x)
* * @param x Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray log1p(INDArray x) { NDValidation.validateNumerical("log1p", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.strict.Log1p(x)); } /** * Log entropy reduction: log(-sum(x * log(x)))
* * @param in Input variable (NUMERIC type) * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output Reduced array of rank (input rank - num dimensions) (NUMERIC type) */ public INDArray logEntropy(INDArray in, int... dimensions) { NDValidation.validateNumerical("logEntropy", "in", in); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.floating.LogEntropy(in, dimensions)); } /** * Log-sum-exp reduction (optionally along dimension).
* Computes log(sum(exp(x))
* * @param input Input variable (NUMERIC type) * @param dimensions Optional dimensions to reduce along (Size: AtLeast(min=0)) * @return output Output variable (NUMERIC type) */ public INDArray logSumExp(INDArray input, int... dimensions) { NDValidation.validateNumerical("logSumExp", "input", input); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.custom.LogSumExp(input, dimensions))[0]; } /** * Manhattan distance (l1 norm, l1 distance) reduction operation. The output contains the Manhattan distance for each
* tensor/subset along the specified dimensions:
* out = sum_i abs(x[i]-y[i])
* * @param x Input variable x (NUMERIC type) * @param y Input variable y (NUMERIC type) * @param dimensions Dimensions to calculate manhattanDistance over (Size: AtLeast(min=0)) * @return output Output variable (NUMERIC type) */ public INDArray manhattanDistance(INDArray x, INDArray y, int... dimensions) { NDValidation.validateNumerical("manhattanDistance", "x", x); NDValidation.validateNumerical("manhattanDistance", "y", y); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce3.ManhattanDistance(x, y, dimensions)); } /** * Matrix determinant op. For 2D input, this returns the standard matrix determinant.
* For higher dimensional input with shape [..., m, m] the matrix determinant is returned for each
* shape [m,m] sub-matrix.
* * @param in Input (NUMERIC type) * @return output Matrix determinant variable (NUMERIC type) */ public INDArray matrixDeterminant(INDArray in) { NDValidation.validateNumerical("matrixDeterminant", "in", in); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.MatrixDeterminant(in))[0]; } /** * Matrix inverse op. For 2D input, this returns the standard matrix inverse.
* For higher dimensional input with shape [..., m, m] the matrix inverse is returned for each
* shape [m,m] sub-matrix.
* * @param in Input (NUMERIC type) * @return output Matrix inverse variable (NUMERIC type) */ public INDArray matrixInverse(INDArray in) { NDValidation.validateNumerical("matrixInverse", "in", in); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.MatrixInverse(in))[0]; } /** * Pairwise max operation, out = max(x, y)
* * Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
* * @param x First input variable, x (NUMERIC type) * @param y Second input variable, y (NUMERIC type) * @return out Output (NUMERIC type) */ public INDArray max(INDArray x, INDArray y) { NDValidation.validateNumerical("max", "x", x); NDValidation.validateNumerical("max", "y", y); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.Max(x, y))[0]; } /** * Merge add function: merges an arbitrary number of equal shaped arrays using element-wise addition:
* out = sum_i in[i]
* * @param inputs Input variables (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray mergeAdd(INDArray... inputs) { NDValidation.validateNumerical("mergeAdd", "inputs", inputs); Preconditions.checkArgument(inputs.length >= 1, "inputs has incorrect size/length. Expected: inputs.length >= 1, got %s", inputs.length); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.pairwise.arithmetic.MergeAddOp(inputs))[0]; } /** * Merge average function: merges an arbitrary number of equal shaped arrays using element-wise mean operation:
* out = mean_i in[i]
* * @param inputs Input variables (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray mergeAvg(INDArray... inputs) { NDValidation.validateNumerical("mergeAvg", "inputs", inputs); Preconditions.checkArgument(inputs.length >= 1, "inputs has incorrect size/length. Expected: inputs.length >= 1, got %s", inputs.length); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.MergeAvg(inputs))[0]; } /** * Merge max function: merges an arbitrary number of equal shaped arrays using element-wise maximum operation:
* out = max_i in[i]
* * @param inputs Input variables (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray mergeMax(INDArray... inputs) { NDValidation.validateNumerical("mergeMax", "inputs", inputs); Preconditions.checkArgument(inputs.length >= 1, "inputs has incorrect size/length. Expected: inputs.length >= 1, got %s", inputs.length); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.MergeMax(inputs))[0]; } /** * Broadcasts parameters for evaluation on an N-D grid.
* * @param inputs (NUMERIC type) * @param cartesian */ public INDArray[] meshgrid(INDArray[] inputs, boolean cartesian) { NDValidation.validateNumerical("meshgrid", "inputs", inputs); Preconditions.checkArgument(inputs.length >= 0, "inputs has incorrect size/length. Expected: inputs.length >= 0, got %s", inputs.length); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.MeshGrid(inputs, cartesian)); } /** * Pairwise max operation, out = min(x, y)
* * Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
* * @param x First input variable, x (NUMERIC type) * @param y Second input variable, y (NUMERIC type) * @return out Output (NUMERIC type) */ public INDArray min(INDArray x, INDArray y) { NDValidation.validateNumerical("min", "x", x); NDValidation.validateNumerical("min", "y", y); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.Min(x, y))[0]; } /** * Pairwise modulus (remainder) operation, out = x % y
* * Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
* * @param x Input variable (NUMERIC type) * @param y Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray mod(INDArray x, INDArray y) { NDValidation.validateNumerical("mod", "x", x); NDValidation.validateNumerical("mod", "y", y); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.pairwise.arithmetic.ModOp(x, y))[0]; } /** * Calculate the mean and (population) variance for the input variable, for the specified axis
* * @param input Input to calculate moments for (NUMERIC type) * @param axes Dimensions to perform calculation over (Size: AtLeast(min=0)) */ public INDArray[] moments(INDArray input, int... axes) { NDValidation.validateNumerical("moments", "input", input); Preconditions.checkArgument(axes.length >= 0, "axes has incorrect size/length. Expected: axes.length >= 0, got %s", axes.length); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.Moments(input, axes)); } /** * Pairwise multiplication operation, out = x * y
* * Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
* * @param x Input variable (NUMERIC type) * @param y Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray mul(INDArray x, INDArray y) { NDValidation.validateNumerical("mul", "x", x); NDValidation.validateNumerical("mul", "y", y); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.pairwise.arithmetic.MulOp(x, y))[0]; } /** * Scalar multiplication operation, out = in * scalar
* * @param x Input variable (NUMERIC type) * @param value Scalar value for op * @return output Output variable (NUMERIC type) */ public INDArray mul(INDArray x, double value) { NDValidation.validateNumerical("mul", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.scalar.ScalarMultiplication(x, value)); } /** * Elementwise negative operation: out = -x
* * @param x Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray neg(INDArray x) { NDValidation.validateNumerical("neg", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.same.Negative(x)); } /** * Calculate the mean and variance from the sufficient statistics
* * @param counts Rank 0 (scalar) value with the total number of values used to calculate the sufficient statistics (NUMERIC type) * @param means Mean-value sufficient statistics: this is the SUM of all data values (NUMERIC type) * @param variances Variaance sufficient statistics: this is the squared sum of all data values (NUMERIC type) * @param shift Shift value, possibly 0, used when calculating the sufficient statistics (for numerical stability) */ public INDArray[] normalizeMoments(INDArray counts, INDArray means, INDArray variances, double shift) { NDValidation.validateNumerical("normalizeMoments", "counts", counts); NDValidation.validateNumerical("normalizeMoments", "means", means); NDValidation.validateNumerical("normalizeMoments", "variances", variances); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.NormalizeMoments(counts, means, variances, shift)); } /** * Boolean OR operation: elementwise (x != 0) || (y != 0)
* If x and y arrays have equal shape, the output shape is the same as these inputs.
* Note: supports broadcasting if x and y have different shapes and are broadcastable.
* Returns an array with values 1 where condition is satisfied, or value 0 otherwise.
* * @param x Input 1 (BOOL type) * @param y Input 2 (BOOL type) * @return output INDArray with values 0 and 1 based on where the condition is satisfied (BOOL type) */ public INDArray or(INDArray x, INDArray y) { NDValidation.validateBool("or", "x", x); NDValidation.validateBool("or", "y", y); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.pairwise.bool.Or(x, y)); } /** * Element-wise power function: out = x^value
* * @param x Input variable (NUMERIC type) * @param value Scalar value for op * @return output Output variable (NUMERIC type) */ public INDArray pow(INDArray x, double value) { NDValidation.validateNumerical("pow", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.scalar.Pow(x, value)); } /** * Element-wise (broadcastable) power function: out = x[i]^y[i]
* * @param x Input variable (NUMERIC type) * @param y Power (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray pow(INDArray x, INDArray y) { NDValidation.validateNumerical("pow", "x", x); NDValidation.validateNumerical("pow", "y", y); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.Pow(x, y))[0]; } /** * Rational Tanh Approximation elementwise function, as described in the paper:
* Compact Convolutional Neural Network Cascade for Face Detection
* This is a faster Tanh approximation
* * @param x Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray rationalTanh(INDArray x) { NDValidation.validateNumerical("rationalTanh", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.strict.RationalTanh(x)); } /** * Pairwise reverse division operation, out = y / x
* * Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
* * @param x Input variable (NUMERIC type) * @param y Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray rdiv(INDArray x, INDArray y) { NDValidation.validateNumerical("rdiv", "x", x); NDValidation.validateNumerical("rdiv", "y", y); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.pairwise.arithmetic.RDivOp(x, y))[0]; } /** * Scalar reverse division operation, out = scalar / in
* * @param x Input variable (NUMERIC type) * @param value Scalar value for op * @return output Output variable (NUMERIC type) */ public INDArray rdiv(INDArray x, double value) { NDValidation.validateNumerical("rdiv", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.scalar.ScalarReverseDivision(x, value)); } /** * Element-wise reciprocal (inverse) function: out[i] = 1 / in[i]
* * @param x Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray reciprocal(INDArray x) { NDValidation.validateNumerical("reciprocal", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.same.Reciprocal(x)); } /** * Rectified tanh operation: max(0, tanh(in))
* * @param x Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray rectifiedTanh(INDArray x) { NDValidation.validateNumerical("rectifiedTanh", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.strict.RectifiedTanh(x)); } /** * Element-wise round function: out = round(x).
* Rounds (up or down depending on value) to the nearest integer value.
* * @param x Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray round(INDArray x) { NDValidation.validateNumerical("round", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.same.Round(x)); } /** * Element-wise reciprocal (inverse) of square root: out = 1.0 / sqrt(x)
* * @param x Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray rsqrt(INDArray x) { NDValidation.validateNumerical("rsqrt", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.floating.RSqrt(x)); } /** * Pairwise reverse subtraction operation, out = y - x
* * Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
* * @param x Input variable (NUMERIC type) * @param y Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray rsub(INDArray x, INDArray y) { NDValidation.validateNumerical("rsub", "x", x); NDValidation.validateNumerical("rsub", "y", y); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.pairwise.arithmetic.RSubOp(x, y))[0]; } /** * Scalar reverse subtraction operation, out = scalar - in
* * @param x Input variable (NUMERIC type) * @param value Scalar value for op * @return output Output variable (NUMERIC type) */ public INDArray rsub(INDArray x, double value) { NDValidation.validateNumerical("rsub", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.scalar.ScalarReverseSubtraction(x, value)); } /** * Set the diagonal value to the specified values
* If input is
* [ a, b, c]
* [ d, e, f]
* [ g, h, i]
* and diag = [ 1, 2, 3] then output is
* [ 1, b, c]
* [ d, 2, f]
* [ g, h, 3]
* * @param in Input variable (NUMERIC type) * @param diag Diagonal (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray setDiag(INDArray in, INDArray diag) { NDValidation.validateNumerical("setDiag", "in", in); NDValidation.validateNumerical("setDiag", "diag", diag); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.MatrixSetDiag(in, diag))[0]; } /** * Shannon Entropy reduction: -sum(x * log2(x))
* * @param in Input variable (NUMERIC type) * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output Reduced array of rank (input rank - num dimensions) (NUMERIC type) */ public INDArray shannonEntropy(INDArray in, int... dimensions) { NDValidation.validateNumerical("shannonEntropy", "in", in); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.floating.ShannonEntropy(in, dimensions)); } /** * Element-wise sign (signum) function:
* out = -1 if in < 0
* out = 0 if in = 0
* out = 1 if in > 0
* * @param x Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray sign(INDArray x) { NDValidation.validateNumerical("sign", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.same.Sign(x)); } /** * Elementwise sine operation: out = sin(x)
* * @param x Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray sin(INDArray x) { NDValidation.validateNumerical("sin", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.strict.Sin(x)); } /** * Elementwise sinh (hyperbolic sine) operation: out = sinh(x)
* * @param x Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray sinh(INDArray x) { NDValidation.validateNumerical("sinh", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.strict.Sinh(x)); } /** * Element-wise square root function: out = sqrt(x)
* * @param x Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray sqrt(INDArray x) { NDValidation.validateNumerical("sqrt", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.floating.Sqrt(x)); } /** * Element-wise square function: out = x^2
* * @param x Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray square(INDArray x) { NDValidation.validateNumerical("square", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.same.Square(x)); } /** * Pairwise squared difference operation.
* * Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
* * @param x Input variable (NUMERIC type) * @param y Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray squaredDifference(INDArray x, INDArray y) { NDValidation.validateNumerical("squaredDifference", "x", x); NDValidation.validateNumerical("squaredDifference", "y", y); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.pairwise.arithmetic.SquaredDifferenceOp(x, y))[0]; } /** * Standardize input variable along given axis
*


* out = (x - mean) / stdev
*


* with mean and stdev being calculated along the given dimension.
*


* For example: given x as a mini batch of the shape [numExamples, exampleLength]:
*


    *
  • use dimension 1 too use the statistics (mean, stdev) for each example

  • *
  • use dimension 0 if you want to use the statistics for each column across all examples

  • *
  • use dimensions 0,1 if you want to use the statistics across all columns and examples

  • *

* * @param x Input variable (NUMERIC type) * @param dimensions (Size: AtLeast(min=1)) * @return output Output variable (NUMERIC type) */ public INDArray standardize(INDArray x, int... dimensions) { NDValidation.validateNumerical("standardize", "x", x); Preconditions.checkArgument(dimensions.length >= 1, "dimensions has incorrect size/length. Expected: dimensions.length >= 1, got %s", dimensions.length); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.Standardize(x, dimensions))[0]; } /** * Elementwise step function:
* out(x) = 1 if x >= cutoff
* out(x) = 0 otherwise
* * @param x Input variable (NUMERIC type) * @param value Scalar value for op * @return output Output variable (NUMERIC type) */ public INDArray step(INDArray x, double value) { NDValidation.validateNumerical("step", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.scalar.Step(x, value)); } /** * Pairwise subtraction operation, out = x - y
* * Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
* * @param x Input variable (NUMERIC type) * @param y Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray sub(INDArray x, INDArray y) { NDValidation.validateNumerical("sub", "x", x); NDValidation.validateNumerical("sub", "y", y); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.pairwise.arithmetic.SubOp(x, y))[0]; } /** * Scalar subtraction operation, out = in - scalar
* * @param x Input variable (NUMERIC type) * @param value Scalar value for op * @return output Output variable (NUMERIC type) */ public INDArray sub(INDArray x, double value) { NDValidation.validateNumerical("sub", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.scalar.ScalarSubtraction(x, value)); } /** * Elementwise tangent operation: out = tan(x)
* * @param x Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray tan(INDArray x) { NDValidation.validateNumerical("tan", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.strict.Tan(x)); } /** * Elementwise tanh (hyperbolic tangent) operation: out = tanh(x)
* * @param x Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public INDArray tanh(INDArray x) { NDValidation.validateNumerical("tanh", "x", x); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.strict.Tanh(x)); } /** * Matrix trace operation
* For rank 2 matrices, the output is a scalar vith the trace - i.e., sum of the main diagonal.
* For higher rank inputs, output[a,b,c] = trace(in[a,b,c,:,:])
* * @param in Input variable (NUMERIC type) * @return output Trace (NUMERIC type) */ public INDArray trace(INDArray in) { NDValidation.validateNumerical("trace", "in", in); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.Trace(in))[0]; } /** * Boolean XOR (exclusive OR) operation: elementwise (x != 0) XOR (y != 0)
* If x and y arrays have equal shape, the output shape is the same as these inputs.
* Note: supports broadcasting if x and y have different shapes and are broadcastable.
* Returns an array with values 1 where condition is satisfied, or value 0 otherwise.
* * @param x Input 1 (BOOL type) * @param y Input 2 (BOOL type) * @return output INDArray with values 0 and 1 based on where the condition is satisfied (BOOL type) */ public INDArray xor(INDArray x, INDArray y) { NDValidation.validateBool("xor", "x", x); NDValidation.validateBool("xor", "y", y); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.pairwise.bool.Xor(x, y)); } /** * Full array zero fraction array reduction operation, optionally along specified dimensions: out = (count(x == 0) / length(x))
* * @param input Input variable (NUMERIC type) * @return output Reduced array of rank 0 (scalar) (NUMERIC type) */ public INDArray zeroFraction(INDArray input) { NDValidation.validateNumerical("zeroFraction", "input", input); return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.ZeroFraction(input))[0]; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy