All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.nd4j.linalg.learning.AMSGradUpdater Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/*******************************************************************************
 * Copyright (c) 2015-2018 Skymind, Inc.
 * Copyright (c) 2020 Konduit K.K.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Apache License, Version 2.0 which is available at
 * https://www.apache.org/licenses/LICENSE-2.0.
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 *
 * SPDX-License-Identifier: Apache-2.0
 ******************************************************************************/

package org.nd4j.linalg.learning;

import lombok.Data;
import lombok.NonNull;
import lombok.val;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.impl.updaters.AmsGradUpdater;
import org.nd4j.linalg.api.shape.Shape;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.indexing.NDArrayIndex;
import org.nd4j.linalg.learning.config.AMSGrad;

import java.util.HashMap;
import java.util.Map;

/**
 * The AMSGrad updater
* Reference: On the Convergence of Adam and Beyond - https://openreview.net/forum?id=ryQu7f-RZ * * @author Alex Black */ @Data public class AMSGradUpdater implements GradientUpdater { public static final String M_STATE = "M"; public static final String V_STATE = "V"; public static final String V_HAT_STATE = "V_HAT"; private AMSGrad config; private INDArray m, v, vHat; // moving avg, sqrd gradients, max private char gradientReshapeOrder; public AMSGradUpdater(AMSGrad config) { this.config = config; } @Override public void setState(@NonNull Map stateMap, boolean initialize) { if(!stateMap.containsKey(M_STATE) || !stateMap.containsKey(V_STATE) || !stateMap.containsKey(V_HAT_STATE) || stateMap.size() != 3){ throw new IllegalStateException("State map should contain only keys [" + M_STATE + "," + V_STATE + "," + V_HAT_STATE + "] but has keys " + stateMap.keySet()); } this.m = stateMap.get(M_STATE); this.v = stateMap.get(V_STATE); this.vHat = stateMap.get(V_HAT_STATE); } @Override public Map getState() { Map r = new HashMap<>(); r.put(M_STATE, m); r.put(V_STATE, v); r.put(V_HAT_STATE, vHat); return r; } @Override public void setStateViewArray(INDArray viewArray, long[] gradientShape, char gradientOrder, boolean initialize) { if (!viewArray.isRowVector()) throw new IllegalArgumentException("Invalid input: expect row vector input"); if (initialize) viewArray.assign(0); val n = viewArray.length() / 3; this.m = viewArray.get(NDArrayIndex.point(0), NDArrayIndex.interval(0, n)); this.v = viewArray.get(NDArrayIndex.point(0), NDArrayIndex.interval(n, 2*n)); this.vHat = viewArray.get(NDArrayIndex.point(0), NDArrayIndex.interval(2*n, 3*n)); //Reshape to match the expected shape of the input gradient arrays this.m = Shape.newShapeNoCopy(this.m, gradientShape, gradientOrder == 'f'); this.v = Shape.newShapeNoCopy(this.v, gradientShape, gradientOrder == 'f'); this.vHat = Shape.newShapeNoCopy(this.vHat, gradientShape, gradientOrder == 'f'); if (m == null || v == null || vHat == null) throw new IllegalStateException("Could not correctly reshape gradient view arrays"); this.gradientReshapeOrder = gradientOrder; } @Override public void applyUpdater(INDArray gradient, int iteration, int epoch) { if (m == null || v == null || vHat == null) throw new IllegalStateException("Updater has not been initialized with view state"); double beta1 = config.getBeta1(); double beta2 = config.getBeta2(); double learningRate = config.getLearningRate(iteration, epoch); double epsilon = config.getEpsilon(); //m_t = b_1 * m_{t-1} + (1-b_1) * g_t eq 1 pg 3 //v_t = b_2 * v_{t-1} + (1-b_2) * (g_t)^2 eq 1 pg 3 //vHat_t = max(vHat_{t-1}, v_t) //gradient array contains: sqrt(vHat) + eps //gradient = alphat * m_t / (sqrt(vHat) + eps) Nd4j.exec(new AmsGradUpdater(gradient, v, m, vHat, learningRate, beta1, beta2, epsilon, iteration)); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy