All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.nd4j.linalg.learning.AdaDeltaUpdater Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/*******************************************************************************
 * Copyright (c) 2015-2018 Skymind, Inc.
 * Copyright (c) 2020 Konduit K.K.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Apache License, Version 2.0 which is available at
 * https://www.apache.org/licenses/LICENSE-2.0.
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 *
 * SPDX-License-Identifier: Apache-2.0
 ******************************************************************************/

package org.nd4j.linalg.learning;

import lombok.Data;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.shape.Shape;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.indexing.NDArrayIndex;
import org.nd4j.linalg.learning.config.AdaDelta;

import java.util.HashMap;
import java.util.Map;

/**
 * http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf
 * https://arxiv.org/pdf/1212.5701v1.pdf
 * 

* Ada delta updater. More robust adagrad that keeps track of a moving window * average of the gradient rather than the every decaying learning rates of adagrad * * @author Adam Gibson */ @Data public class AdaDeltaUpdater implements GradientUpdater { public static final String MSG_STATE = "msg"; public static final String MSDX_STATE = "msdx"; private final AdaDelta config; private INDArray msg; //E[g^2]_t by arxiv paper, algorithm 1 private INDArray msdx; //E[delta x^2]_t by arxiv paper, algorithm 1 public AdaDeltaUpdater(AdaDelta config) { this.config = config; } @Override public void setState(Map stateMap, boolean initialize) { if(!stateMap.containsKey(MSG_STATE) || !stateMap.containsKey(MSDX_STATE) || stateMap.size() != 2){ throw new IllegalStateException("State map should contain only keys [" + MSG_STATE + "," + MSDX_STATE + "] but has keys " + stateMap.keySet()); } this.msg = stateMap.get(MSG_STATE); this.msdx = stateMap.get(MSDX_STATE); } @Override public Map getState() { Map r = new HashMap<>(); r.put(MSG_STATE, msg); r.put(MSDX_STATE, msdx); return r; } @Override public void setStateViewArray(INDArray viewArray, long[] gradientShape, char gradientOrder, boolean initialize) { if (!viewArray.isRowVector()) throw new IllegalArgumentException("Invalid input: expect row vector input"); if (initialize) viewArray.assign(0); long length = viewArray.length(); this.msg = viewArray.get(NDArrayIndex.point(0), NDArrayIndex.interval(0, length / 2)); this.msdx = viewArray.get(NDArrayIndex.point(0), NDArrayIndex.interval(length / 2, length)); //Reshape to match the expected shape of the input gradient arrays this.msg = Shape.newShapeNoCopy(this.msg, gradientShape, gradientOrder == 'f'); this.msdx = Shape.newShapeNoCopy(this.msdx, gradientShape, gradientOrder == 'f'); if (msg == null || msdx == null) throw new IllegalStateException("Could not correctly reshape gradient view arrays"); } /** * Get the updated gradient for the given gradient * and also update the state of ada delta. * * @param gradient the gradient to get the * updated gradient for * @param iteration * @return the update gradient */ @Override public void applyUpdater(INDArray gradient, int iteration, int epoch) { if (msg == null || msdx == null) throw new IllegalStateException("Updater has not been initialized with view state"); double rho = config.getRho(); double epsilon = config.getEpsilon(); //Line 4 of Algorithm 1: https://arxiv.org/pdf/1212.5701v1.pdf //E[g^2]_t = rho * E[g^2]_{t-1} + (1-rho)*g^2_t //Calculate update: //dX = - g * RMS[delta x]_{t-1} / RMS[g]_t //Note: negative is applied in the DL4J step function: params -= update rather than params += update //Accumulate gradients: E[delta x^2]_t = rho * E[delta x^2]_{t-1} + (1-rho)* (delta x_t)^2 Nd4j.exec(new org.nd4j.linalg.api.ops.impl.updaters.AdaDeltaUpdater(gradient, msg, msdx, rho, epsilon)); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy