All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.nd4j.linalg.learning.AdaGradUpdater Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/*******************************************************************************
 * Copyright (c) 2015-2018 Skymind, Inc.
 * Copyright (c) 2020 Konduit K.K.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Apache License, Version 2.0 which is available at
 * https://www.apache.org/licenses/LICENSE-2.0.
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 *
 * SPDX-License-Identifier: Apache-2.0
 ******************************************************************************/

package org.nd4j.linalg.learning;


import lombok.Data;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.shape.Shape;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.learning.config.AdaGrad;

import java.util.Collections;
import java.util.Map;


/**
 * Vectorized Learning Rate used per Connection Weight
 * 

* Adapted from: http://xcorr.net/2014/01/23/adagrad-eliminating-learning-rates-in-stochastic-gradient-descent/ * See also http://cs231n.github.io/neural-networks-3/#ada * * @author Adam Gibson */ @Data public class AdaGradUpdater implements GradientUpdater { public static final String GRAD_STATE = "grad"; public INDArray historicalGradient; public int[] shape; protected double learningRate = 1e-1; // learning rate protected int numIterations = 0; private double epsilon = AdaGrad.DEFAULT_ADAGRAD_EPSILON; private char gradientReshapeOrder; private AdaGrad config; public AdaGradUpdater(AdaGrad config) { this.config = config; } @Override public void setState(Map stateMap, boolean initialize) { if(!stateMap.containsKey(GRAD_STATE) || stateMap.size() != 1){ throw new IllegalStateException("State map should contain only key [" + GRAD_STATE + "] but has keys " + stateMap.keySet()); } this.historicalGradient = stateMap.get(GRAD_STATE); } @Override public Map getState() { return Collections.singletonMap(GRAD_STATE, historicalGradient); } @Override public void setStateViewArray(INDArray viewArray, long[] gradientShape, char gradientOrder, boolean initialize) { if (!viewArray.isRowVectorOrScalar()) throw new IllegalArgumentException("Invalid input: expect row vector input"); if (initialize) viewArray.assign(epsilon); this.historicalGradient = viewArray; //Reshape to match the expected shape of the input gradient arrays this.historicalGradient = Shape.newShapeNoCopy(this.historicalGradient, gradientShape, gradientOrder == 'f'); if (historicalGradient == null) throw new IllegalStateException("Could not correctly reshape gradient view array"); this.gradientReshapeOrder = gradientOrder; } /** * Gets feature specific learning rates * Adagrad keeps a history of gradients being passed in. * Note that each gradient passed in becomes adapted over time, hence the opName adagrad * * @param gradient the gradient to get learning rates for * @param iteration */ @Override public void applyUpdater(INDArray gradient, int iteration, int epoch) { if (historicalGradient == null) throw new IllegalStateException("Updater has not been initialized with view state"); double learningRate = config.getLearningRate(iteration, epoch); double epsilon = config.getEpsilon(); Nd4j.exec(new org.nd4j.linalg.api.ops.impl.updaters.AdaGradUpdater(gradient, historicalGradient, learningRate, epsilon)); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy