All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.nd4j.linalg.learning.config.AdaGrad Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/*******************************************************************************
 * Copyright (c) 2015-2018 Skymind, Inc.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Apache License, Version 2.0 which is available at
 * https://www.apache.org/licenses/LICENSE-2.0.
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 *
 * SPDX-License-Identifier: Apache-2.0
 ******************************************************************************/

package org.nd4j.linalg.learning.config;

import lombok.Builder;
import lombok.Data;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.learning.AdaGradUpdater;
import org.nd4j.linalg.learning.GradientUpdater;
import org.nd4j.linalg.schedule.ISchedule;
import org.nd4j.shade.jackson.annotation.JsonProperty;

import java.util.Map;

/**
 * Vectorized Learning Rate used per Connection Weight
 * 

* Adapted from: http://xcorr.net/2014/01/23/adagrad-eliminating-learning-rates-in-stochastic-gradient-descent/ * See also http://cs231n.github.io/neural-networks-3/#ada * * @author Adam Gibson */ @Data @Builder(builderClassName = "Builder") public class AdaGrad implements IUpdater { public static final double DEFAULT_ADAGRAD_LEARNING_RATE = 1e-1; public static final double DEFAULT_ADAGRAD_EPSILON = 1e-6; @lombok.Builder.Default private double learningRate = DEFAULT_ADAGRAD_LEARNING_RATE; private ISchedule learningRateSchedule; @lombok.Builder.Default private double epsilon = DEFAULT_ADAGRAD_EPSILON; public AdaGrad(){ this(DEFAULT_ADAGRAD_LEARNING_RATE, null, DEFAULT_ADAGRAD_EPSILON); } public AdaGrad(double learningRate){ this(learningRate, null, DEFAULT_ADAGRAD_EPSILON); } public AdaGrad(double learningRate, double epsilon){ this(learningRate, null, epsilon); } public AdaGrad(ISchedule learningRateSchedule){ this(Double.NaN, learningRateSchedule, DEFAULT_ADAGRAD_EPSILON); } public AdaGrad(ISchedule learningRateSchedule, double epsilon){ this(Double.NaN, learningRateSchedule, epsilon); } private AdaGrad(@JsonProperty("learningRate") double learningRate, @JsonProperty("learningRateSchedule") ISchedule learningRateSchedule, @JsonProperty("epsilon") double epsilon){ this.learningRate = learningRate; this.learningRateSchedule = learningRateSchedule; this.epsilon = epsilon; } @Override public long stateSize(long numParams) { return numParams; } @Override public GradientUpdater instantiate(INDArray viewArray, boolean initializeViewArray) { AdaGradUpdater u = new AdaGradUpdater(this); u.setStateViewArray(viewArray, viewArray.shape(), viewArray.ordering(), initializeViewArray); return u; } @Override public GradientUpdater instantiate(Map updaterState, boolean initializeStateArrays) { AdaGradUpdater u = new AdaGradUpdater(this); u.setState(updaterState, initializeStateArrays); return u; } @Override public AdaGrad clone() { return new AdaGrad(learningRate, epsilon); } @Override public double getLearningRate(int iteration, int epoch){ if(learningRateSchedule != null){ return learningRateSchedule.valueAt(iteration, epoch); } return learningRate; } @Override public boolean hasLearningRate() { return true; } @Override public void setLrAndSchedule(double lr, ISchedule lrSchedule) { this.learningRate = lr; this.learningRateSchedule = lrSchedule; } //Partial builder implementation to give public no-arg constructor public static class Builder { public Builder(){ } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy